• Title/Summary/Keyword: Arc state

Search Result 233, Processing Time 0.039 seconds

Development of Estimation Model Are Stability Considering Arc Extinction with Multiple Regression Analysis in $CO_2$ Arc Welding ($CO_2$ 아크 용접에 있어서 다중회귀분석에 의한 아크 끊어짐을 고려한 아크 안정성 예측 모델 개발)

  • Gang, Mun-Jin;Lee, Se-Heon;U, Jae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1885-1898
    • /
    • 2000
  • Welding quality is closely related to the arc state. So, it is very important to estimate the arc state in real time. In the short circuit transfer region of CO2 are welding, the spatter , as it is well known, is mainly generated on an instance of short circuit or on an instance that the are is ignited after short circuit, or on the cases of an instantaneous short circuit. If the short circuit period or the arc time is irregular, the spatter is generated more than it is regular. Thus there is a close relationship of the amount of the spatter generation with the arc stability. In this paper, to develop the index for estimating the arc stability in short circuit transfer range Of CO2 arc welding, the welding current and are voltage waveforms were measured and the spatter generated was captured and measured. The correlation analysis of the measured amount of the spatter with the factors (the components and the standard deviations of the components) was performed, and the factors that have a considerable influence on the spatter generation among all factors were selected. And some cases of models consisted of the factors were presented, and a mathematical index model which can make an estimation the amount of the spatter from these models with multiple regression analysis. Also, it was compared how much the amount of the spatter generated under the selected welding conditions do these index models fit, and the index model to estimate the arc stability which represent the spatter generation most appropriately was developed

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

A Study on Series Arc Detection Algorithm for the Consumer Appliances (가정용 부하에서 발생하는 직렬아크 신호분석 및 검출알고리즘)

  • Lim, Jong-Ung;Bang, Sun-Bae;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.351-352
    • /
    • 2014
  • In this paper, series-arc detection algorithm for the consumer appliances is proposed. This algorithm uses varying frequency and RMS values at series-arc state. This is confirmed to emulate arc detecting with measuring current data.

  • PDF

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

Analysis of Current Signals for Overcurrent and Series Arc in Traditional Market Shops (재래시장 상가에서 과전류 및 직렬아크의 전류 신호에 대한 분석)

  • Kim, Doo-Hyun;Hwang, Dong-Kyu;Kim, Sung-Chul;Kim, Sang-Ryull;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.42-48
    • /
    • 2012
  • This paper is aimed to analysis of electrical fire risk by overcurrent and series arc signals in traditional market shops Firstly, the field state investigation was conducted for shops at the traditional market (30 shops). At each shop in the traditional market, load characteristics were investigated and thermal characteristics in Panel were analyzed. Thermal characteristics in Panel is an indicator that can determine the impact of overcurrent. Results of the field state investigation found out four shops which showed abnormal thermal characteristics in Panel. Electrical load characteristics of these 4 shops were simulated by experimental setup consists of generator, motor and heater. In order to verify the electrical fire risk by electrical loads of 4 shops, arc and overcurrent experiments were conducted. The waveshapes of arc and overcurrent are investigated in both the time and frequency domains to find signal characteristics. The results obtained in this paper will be very helpful for the prevention of electrical fires occurred at the shops in the traditional market.

Analysis of Thermal Recovery Characteristics for $SF^6$ Gas-Blast Arc within Laval Nozzle (Laval Nozzle에 대한 $SF^6$ 아크의 열적회복특성 해석)

  • Song, Gi-Dong;Lee, Byeong-Yun;Gyeong-Yeop;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.522-529
    • /
    • 2002
  • In this paper, computer simulations of the physical Phenomena occurring in the arc region before and after current zero were carried out to evaluate the thermal recovery characteristics of a Laval nozzle. A commercial CFD program "PHOENICS" is used for the simulation and the user-coded subroutines to consider the arcing phenomena were added to this program by the authors. The computed results were verified by the comparison with the test results presented by the research group of GE Co.(General Electric Company). In order to investigate the state of the arc region after current zero, the simulation was carried out with three steps. They are steady state arc simulation, transient arc simulation before current zero, and transient hot-gas flow simulation after current zero. The semi-experimental arc radiation model is adapted to consider the radiation energy transport and Prandtl's mixing length model is employed as the turbulence model. The electric field and the magnetic field were calculated with the same grid structure used for the simulation of the flow field. The post-arc current was calculated to evaluate the thermal recovery characteristics after current zero. Compared with the results obtained by GE Co., it has been found that the critical RRRV(ratio of rise of recovery voltage) will be determined previously by this study.his study.

Analysis of Voltage, Current and Temperature Signals for Poor Connections at Electrical Connector (커넥터에서 접촉불량 발생시의 전압, 전류 및 온도 신호 특성 분석)

  • Kim, Sang-Chul;Kim, Doo Hyun;Kang, Shin Uk
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • This paper is aimed to analyze the characteristics of simultaneous voltage, current and temperature signals for poor connection on electrical connector. In order to attain this purpose, detected were the current and voltage signals on electric wire with series arc, named arc signals, and also monitored were the changes of RMS, instantaneous value of waveform in time domain and temperature value with video. Two states are made normal state over $5kgf{\cdot}cm$ and poor connections state below $0.5kgf{\cdot}cm$ by screw gage. In the voltage signal case, the voltage drop was increased with which the current was increased. In the current signal case, poor connections at the time interval 1~4A all showed "shoulder", as distinct difference from the normal state shown waveform pattern. In the temperature signal case, poor connections are twice at 1A and five times at 4A in the normal state. The temperature continues insulation of electrical wiring and connector can be carbonized. The results of this study will be effectively used in developing the preventive devices and system for electric fire by poor connections.

Experimental Investigations Into Low Current Steady State Arcs In A Dual-Airflow Model Interrupter

  • Shin, Young-June;Cho, Yun-Ok;Kim, Jin-Gi;Lee, Jeong-Rim
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.961-965
    • /
    • 1992
  • It is well-known that shock waves frequently occur inside the nozzle of the interrupter, and that they play important roles in the arc interruption. A model interrupter with two-dimensional dual-airflow nozzles was used for this experiment. The arc was ignited with 1.4 mil copper wire stretched between the electrodes which were spaced out 56 mm. The arc current of 60 to 230 A was achieved by adjusting the external resistance from 5.5 to 1.6 ohms. The arc tests have been conducted for investigating the air arc characteristics, and the effects of shock waves and nozzle pressure ratios on the arc voltage, the arc resistance, the arc power, and average electric field. The results of these tests have been analyzed to provide insights into the arc characteristics for gas circuit breakers. The average electric field is represented by the function of the arc current to show the negative E-I characteristic explicitly. The effects of shock waves and nozzle pressure ratios are shown to be significant for a circuit breaker performance.

  • PDF

PROCESS OPTIMIZATION OF METHANE REFORMING IN ARC JET (아크젯 플라즈마에서의 메탄개질의 최적화)

  • Hwang, Na-Kyung;Lee, Dae-Hoon;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.266-271
    • /
    • 2006
  • Characteristic of partial oxidation of methane using arc-jet plasma by AC power is investigated. Arc-jet reactor used in this work is slightly modified from typical arc jet reactor so that it can make and sustain stable state of plasma. Methane conversion, selectivity of chemicals such as hydrogen and hydrocarbon materials in the product are analyzed. Parametric approach on the performance of the reactor or detail on the partial oxidation process is carried with $O_2/C$ ratio as parameter. In addition to the results, SED and arc length is changed to understand the effect of current-voltage correlation on the reforming performance and relative role of thermal process.

  • PDF

Numerical Analysis of Arc-Heated Flow through a solution of Electric Field (전기장 해석을 통한 아크/열 유동 해석)

  • Kim Chin-Su;Oh Se-Jong;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF