• 제목/요약/키워드: Arc discharge

검색결과 372건 처리시간 0.024초

Simple one-step synthesis of carbon nanoparticles from aliphatic alcohols and n-hexane by stable solution plasma process

  • Park, Choon-Sang;Kum, Dae Sub;Kim, Jong Cheol;Shin, Jun-Goo;Kim, Hyun-Jin;Jung, Eun Young;Kim, Dong Ha;Kim, Daseulbi;Bae, Gyu Tae;Kim, Jae Young;Shin, Bhum Jae;Tae, Heung-Sik
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.31-37
    • /
    • 2018
  • This paper examines a simple one-step and catalyst-free method for synthesizing carbon nanoparticles from aliphatic alcohols and n-hexane with linear molecule formations by using a stable solution plasma process with a bipolar pulse and an external resistor. When the external resistor is adopted, it is observed that the current spikes are dramatically decreased, which induced production of a more stable discharge. Six aliphatic linear alcohols (methanol-hexanol) containing carbon with oxygen sources are studied as possible precursors for the massive production of carbon nanoparticles. Additional study is also carried out with the use of n-hexane containing many carbons without an oxygen source in order to enhance the formation of carbon nanoparticles and to eliminate unwanted oxygen effects. The obtained carbon nanoparticles are characterized with field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results show that with increasing carbon ratios in alcohol content, the synthesis rate of carbon nanoparticles is increased, whereas the size of the carbon nanoparticles is decreased. Moreover, the degree of graphitization of the carbon nanoparticles synthesized from 1-hexanol and n-hexane with a high carbon (C)/oxygen (O) ratio and low or no oxygen is observed to be greater than that of the carbon nanoparticles synthesized from the corresponding materials with a low C/O ratio.

$^{228}Ra$를 이용한 이상 저염 대마난류수의 기원 추적 연구 (A Study on the Origin of Anomalously Low Saline Tsushima Current Water Using $^{228}Ra$)

  • 이동섭;김기현
    • 한국해양학회지:바다
    • /
    • 제3권4호
    • /
    • pp.175-182
    • /
    • 1998
  • 동해의 울릉분지 표층에서 1996년 9월 초부터 11월 사이에 염분$^*$ 32 이하의 저염 해수가 출현했음이 최근 학계에 보고되었으며, 이 해수의 기원으로 여름철에 제주도 부근까지 세력을 확장하는 장강 유출수가 지목되었다. 대한해협의 서수로를 통과하는 해수가 두 단성분(장강 회석수와 쿠로시오 해수) 간의 단순한 혼합에 의한다는 가정하에 $^{228}Ra/^{226}Ra$ 방사능 비를 보존적 추적자로 활용하여, 두 수괴가 대한해협 서수로를 통과하는 표층수를 형성하는데 얼마나 기여하는가를 산정하였다. 알려진 두 단성분의 $^{228}Ra$, $^{226}Ra$ 방사능 측정값과 대한해협 서수로에서 측정한 $^{228}Ra/^{226}Ra$ 방사능 비로써 계산한 결과, 장강 희석수는 평균 염분이 32.17이었던 1996년 9월에 대한해협 서수로 표층수의 $58{\pm}3%$ 그리고 평균 염분이 34.53이었던 1997년 2월에는 $10{\pm}3%$ 기여하였던 것으로 나타났다. 이것은 제한된 자료와 매우 단순한 모델로부터 얻은 결과이지만 장강 유출수가 동해 내부에까지 영향을 주고 있음을 지시하며, 현재 장강 수계에 건설중인 삼협댐이 완공되면 장강 희석수 자체의 변화로 인해 북부 동중국해와 울릉분지 부근에 걸쳐 수십년 시간 규모의 해양 환경 변화가 일어날 것으로 판단된다.

  • PDF

Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장 (Growth of vertically aligned carbon nanotubes on Co-Ni alloy metal)

  • 이철진;김대운;이태재;박정훈;손권희;류승철;송홍기;최영철;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1504-1507
    • /
    • 1999
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD using $C_2H_2$ gas. Since the discovery of carbon nanotubes, Synthesis of carbon nanotubes for mass production has been achieved by several methods such as laser vaporization arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is of technological importance for applications to FED. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. Despite such breakthroughs in the growth, the growth mechanism of the alignment are still far from being clearly understood. Furthermore, FED has not been clearly demonstrated yet at a practical level. Here, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and then nanotubes are further grown by the cap growth mechanism.

  • PDF

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

고온 플라즈마 개질에 의한 메탄으로부터 고농도 수소생산 (Production of Hydrogen-Rich Gas from Methane by a Thermal Plasma Reforming)

  • 김성천;임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.362-370
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the plasmatron assisted $CH_4$ reforming reaction for the hydrogen-rich gas production. Also, in order to increase the hydrogen production and the methane conversion rate, parametric screening studies were conducted, in which there were the variations of the $CH_4$ flow ratio, $CO_2$ flow ratio, vapor flow ratio, mixing flow ratio and catalyst addition in reactor. High temperature plasma flame was generated by air and arc discharge. The air flow rate and input electric power were fixed 5.1 l/min and 6.4 kW, respectively. When the $CH_4$ flow ratio was 38.5%, the production of hydrogen was maximized and optimal methane conversion rate was 99.2%. Under these optimal conditions, the following synthesis gas concentrations were determined: $H_2$, 45.4%; CO, 6.9%; $CO_2$, 1.5%; and $C_2H_2$, 1.1%. The $H_2/CO$ ratio was 6.6, hydrogen yield was 78.8% and energy conversion rate was 63.6%.

산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용 (Iron Oxide-Carbon Nanotube Composite for NH3 Detection)

  • 이현동;김다혜;고다애;김도진;김효진
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.187-193
    • /
    • 2016
  • Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

갈륨비소-탄소나노튜브 복합체 제작과 전계방출특성 (GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property)

  • 임현철;찬드라세카;장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.199-203
    • /
    • 2010
  • Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at $400^{\circ}C$ under an $N_2/O_2$ atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from $400^{\circ}C$ to $600^{\circ}C$. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under $500^{\circ}C$, while nanowire structures begin to form on the beads above $600^{\circ}C$. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of $2.0\;V/{\mu}m$ was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.

Characterizationof Graphene Modified by Self-Assembled Monolayers on Polyethylene Terephthalate Film

  • 조주미;정대성;김유석;송우석;;차명준;이수일;정상희;박상은;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.616-616
    • /
    • 2013
  • 그래핀(Graphene)은 열전도도가 높고 전자 이동도(200,000 cm2V-1s-1)가 우수한 전기적 특성을 가지고 있어 전계 효과 트랜지스터(Field effect transistor; FET), 유기 전자 소자(Organic electronic device)와 광전자 소자(Optoelectronic device) 같은 반도체 소자에 응용 가능하다. 최근에는 아크 방출(Arc discharge method), 화학적 기상 증착법(Chemical vapor deposition; CVD), 이온-조사법(Ionirradiation)등을 이용한 이종원자(Hetero atom)도핑과 화학적 처리를 이용한 기능화(Functionalization)등의 방법으로 그래핀의 전도도를 향상시킬 수 있었다. 그러나 이러한 방법들은 기판의 표면을 거칠게 하며, 그래핀에 많은 결함들이 발생한다는 단점이 있다. 이러한 단점을 극복하기 위해 자가조립 단층막법(Self-assembled monolayers; SAMs)을 이용하여 기판을 기능화한 후 그 위에 그래핀을 전사하면, 자가조립 단층막의 기능기에 따라 그래핀의 일함수를 조절 가능하고 운반자 농도나 도핑 유형을 변화시켜 소자의 전기적 특성을 최적화 할 수 있다 [1-3]. 본 연구에서는 PET(polyethylene terephthalate) 기판에 SAMs를 이용하여 유연하고 투명한 그래핀 전극을 제작하였다. 산소 플라즈마와 3-Aminopropyltriethoxysilane (APTES)를 이용하여 PET 기판 표면 위에 하이드록실 기(Hydroxyl group; -OH)와 아민 기(Amine group; -NH2)를 순차적으로 기능화 하였고, 그 위에 화학적 기상 증착법을 이용하여 합성한 대면적의 균일한 그래핀을 전사하였다. PET 기판 위에 NH2 그룹이 존재하는 것을 접촉각 측정(Contact angle measurement)과 X-선 광전자 분광법(Xray photoelectron spectroscopy: XPS)을 통해 확인하였으며, NH2그룹에 의해 그래핀에 도핑 효과가 나타난 것을 라만 분광법(Raman spectroscopy)과 전류-전압 특성곡선(I-V characteristic curve)을 이용하여 확인하였다. 본 연구 결과는 유연하고 투명한 기판 위에 안정적이면서 패턴이 가능하기 때문에 그래핀을 기반으로 하는 반도체 소자에 적용 가능할 것이라 예상된다.

  • PDF

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF