• 제목/요약/키워드: Arc Segments

Search Result 41, Processing Time 0.029 seconds

Movement Simulation on the Path Planned by a Generalized Visibility Graph (일반화 가시성그래프에 의해 계획된 경로이동 시뮬레이션)

  • Yu, Kyeon-Ah;Jeon, Hyun-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • The importance of NPC's role in computer games is increasing. An NPC must perform its tasks by perceiving obstacles and other characters and by moving through them. It has been proposed to plan a natural-looking path against fixed obstacles by using a generalized visibility graph. In this paper we develop the execution module for an NPC to move efficiently along the path planned on the generalized visibility graph. The planned path consists of line segments and arc segments, so we define steering behaviors such as linear behaviors, circular behaviors, and an arriving behavior for NPC's movements to be realistic and utilize them during execution. The execution module also includes the collision detection capability to be able to detect dynamic obstacles and uses a decision tree to react differently according to the detected obstacles. The execution module is tested through the simulation based on the example scenario in which an NPC interferes the other moving NPC.

  • PDF

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Development of a Graphic Simulation Modeller for Robot Welding Process Planning (로보트 용접 공정 계획을 위한 Graphic Simulation Modeller의 개발)

  • Choe, Byeong-Gyu;Jeong, Jae-Yun;Kim, Dong-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.1
    • /
    • pp.21-32
    • /
    • 1985
  • Presented in this paper is a procedure of developing graphical simulation software for planning robot welding processes. Welding is by far the highest application area for industrial robots, and it has been in great need of such a simulator in designing robot work cells, in justifying the economics of robot welding and in planning robotized welding operations. The model of a robot welding cell consists of four components: They are an welding structure which is a collection of plates to be welded, a positioner to hold the welding structure, a robot with a weld torch, and a set of welding lines (in case of arc welding). Welding structure is modeled by using the reference plane concept and is represented as boundary file which is widely used in solid modeling. Robot itself is modeled as a kinematic linkage system. Also included in the model are such technical constraints as weaving patterns and inclination allowances for each weld joint type. An interactive means is provided to input the welding structure and welding lines on a graphics terminal. Upon completion of input, the program displays the welding structure and welding lines and calculates the center of mass which is used in determining positioner configurations. For a given positioner and robot configuration, the welding line segments that can be covered by the robot are identified, enabling to calculate the robot weld ratio and cycle time. The program is written in FORTRAN for a VAX computer with a Tektronix 4114 graphic terminal.

  • PDF

Grindability of Ti-Xwt%Cu Alloys for Dental Applications (치과용 Ti-Xwt%Cu 합금의 연삭성)

  • Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

Real-Time Tool-Path Generation for 3-Axis CNC Machining of NURBS Surfaces (NURBS 곡면의 3축 CNC 가공을 위한 실시간 공구경로 생성)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1418-1425
    • /
    • 2003
  • In CAD systems, a surface to be machined is expressed by a series of curves, such as B-spline, Bezier and NURBS curves, which compose the surface and then in CAM systems the curves are divided into a large number of line or arc segments. These divided movement commands, however, cause many problems including their excessive size of NC data that makes almost impossible local adjustment or modification of the surface. To cope with those problems, the necessity of real-time curve or surface interpolators was embossed. This paper presents an efficient real-time tool-path generation method fur interpolation of NURBS surfaces in CNC machining. The proposed tool-path generation method is based on an improved iso-scallop strategy and can provide better precision than the existing methods. The proposed method is designed such that tool-path planning is easily managed in real-time. It proposed a new algorithm for regulation of a scallop height, which can efficiently generate tool-paths and can save machining time compared with the existing method. Through computer simulations, the performance of the proposed method is analyzed and compared with the existing method in terms of federate, total machining time and a degree of constraint on the scallop height.

Microstructure of the antennal sensory organs in female millipede Oxidus gracilis (Polydesmida: Paradoxomatidae)

  • Chung, Kyung-Hwun;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • The fine structural characteristics of the antennal sensory organs of a female millipede Oxidus gracilis (Polydesmida: Paradoxomatidae) were observed with both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). We could identify four apical cones and three basic types of antennal sensillae in a. gracilis as follows: chaetiform sensilla (CS), trichoid sensilla (TS) and basiconic sensilla (BS). Of these, both types of CS and TS can be observed throughout all antennal segments except the terminal 8th article, whereas the BS are observed within the cuticular depressed regions of the articles from the 5th to the 7th segment. According to their relative microstructure and location, the BS arc divided further into three subtypes: large ($BS_1$) small ($BS_2$) and spiniform ($BS_3$). The $BS_1$ can be seen on the 5th article only, while $BS_2$ can be seen on the 5th and 6th articles. The $BS_3$ is characteristically seen within the depressive region of the 7th article. Both the CS and TS of O. gracilis are similar in structure, and they are related to the function of mechanical reception; however, four large apical cones (AP) and three subtypes of BS are likely to function in gustatory and olfactory reception.

Recognition of Hatched-Area from Region Information of Object and Vectorized Interpretation Lines (객체의 영역 정보와 벡터화된 설명선으로부터 해칭 영역의 인식)

  • Jung, Yoon-Su;Oh, Sang-Keun;Lee, Byung-Kil;Park, Kil-Houm
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.842-850
    • /
    • 1998
  • In this paper, we propose a method that recognize hatched area based on segmentation and vectorization of a machine drawing. This recogntion of hatched area is composed of three parts. First, the proposed method segments an object, arrowheads and interpretation lines from the machine drawing and vectorizes the object and interpretation lines. Second, closed-loops are labeled with the vectorized objects, and then candidates of hatched areas arc determined. Finally, by recognizing hatched lines included in hatched areas, recognition of the hatched areas is completed. The proposed method is more useful in extracting and recognizing the hatched areas.

  • PDF

A design of the PSDG based semantic slicing model for software maintenance (소프트웨어의 유지보수를 위한 PSDG기반 의미분할모형의 설계)

  • Yeo, Ho-Young;Lee, Kee-O;Rhew, Sung-Yul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2041-2049
    • /
    • 1998
  • This paper suggests a technique for program segmentation and maintenance using PSDG(Post-State Dependency Graph) that improves the quality of a software by identifying and detecting defects in already fixed source code. A program segmentation is performed by utilizing source code analysis which combines the measures of static, dynamic and semantic slicing when we need understandability of defect in programs for corrective maintanence. It provides users with a segmental principle to split a program by tracing state dependency of a source code with the graph, and clustering and highlighting, Through a modeling of the PSDG, elimination of ineffective program deadcode and generalization of related program segments arc possible, Additionally, it can be correlated with other design modeb as STD(State Transition Diagram), also be used as design documents.

  • PDF

A Study on the, Tooth Profile and Strength of WILDHABER-NOVIKOV Gear for high Power Transmission (고부하 동력 전달용 WILDHABER-NOVIKOV GEAR의 치형과 강도에 대한 연구)

  • Choe, Sang-Hoon;Park, Yoong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.85-94
    • /
    • 1984
  • The WILDHABER-NOVIKOV gear, one of the circular arc gears, has the large contact area between the convex and concave profiled mating teeth, moves from one end of the tooth to the other axially making a face contact. Hence it provides a large load capacity than the Involute gear and still satisfying the law of gearing. In order to analyze the gear stress, a photoelastic investigation was carried out. Photo elastic model of the WILDHABER-NOVIKOV gears were made of Araldite CT200 in this investigation. For both the many teeth gear and the few teeth gear segments, External gears of all addendum type WILDHABER-NOVIKOV gear and the involute gear were tested. Included were the models with various profile raddi at the same pressure angle 20 .deg. and module 13.5. The flank stresses and fillet stresses of these gears were observed in each case and compared with those of gears. From this investigation, the following results were obtained. A. In the case of having many teeth gear: As the profile radius is increased, the fillet stresses of the WILDHABER-NOVIKOV gear become the same or less than that of the INVOLUTE gea, and the flank stress becomes smaller than that of the INVOLUTE gear. Therefore the better design condition is satisfied with a large profile radius. B. IN the case of having a few teeth gear: As the profile radius is increased the flank stress of WILDHABER-NOVIKOV gear becomes smaller than that of the INVOLUTE gear, but the fillet stresses become larger than that of the INVOLUTE gear. Therefore the larger design condition is satisfied with small profile radius.

  • PDF

The Kinematic Analysis of the Upper Extremity during Backhand Stroke in Squash (스쿼시 백핸드 드라이브 동작시 상지 분절의 운동학적 변인 분석)

  • An, Yong-Hwan;Ryu, Ji-Seon;Ryu, Ho-Young;Soo, Jae-Moo;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2007
  • The purposes of this study were to investigate kinematic parameters of racket head and upper extremities during squash back hand stroke and to provide quantitative data to the players. Five Korean elite male players were used as subjects in this study. To find out the swing motion of the players, the land-markers were attached to the segments of upper limb and 3-D motion analysis was performed. Orientation angles were also computed for angular movement of each segment. The results were as follows. 1) the average time of the back hand swing (downswing + follow-through) was 0.39s (0.24 s + 0.15 s). 2) for each event, the average racket velocity at impact was 11.17m/s and the velocity at the end of swing was 8.03m/s, which was the fastest swing speed after impact. Also, for each phase, 5.10m/s was found in down swing but 7.68m/s was found in follow-through. Racket swing speed was fastest after the impact but the swing speed was reduced in the follow-through phase. 3) in records of average of joints angle, shoulder angle was defined as the relative angle to the body. 1.04rad was found at end of back swing, 1.75rad at impact and it changes to 2.35 rad at the end of swing. Elbow angle was defined as the relative angle of forearm to upper arm. 1.73rad was found at top of backswing, 2.79rad at impact, and the angle was changed to 2.55rad at end of swing. Wrist angle was defined as the relative angle of hand to forearm. 2.48rad was found at top of backswing, 2.86rad at impact, and the angle changes to 1.96rad at end of swing. As a result, if the ball is to fly in the fastest speed, the body has to move in the order of trunk, shoulder, elbow and wrist (from proximal segment to distal segment). Thus, the flexibility of the wrist can be very important factor to increase ball speed as the last action of strong impact. In conclusion, the movement in order of the shoulder, elbow and the wrist decided the racket head speed and the standard deviations were increased as the motion was transferred from proximal to the distal segment due to the personal difference of swing arc. In particular, the use of wrist (snap) may change the output dramatically. Therefore, it was concluded that the flexible wrist movement in squash was very important factor to determine the direction and spin of the ball.