• Title/Summary/Keyword: Arc Energy

Search Result 597, Processing Time 0.023 seconds

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

Investigation on $SF_6$ Hybrid Interrupter using Thermal Expansion and Arc Rotation Principle (자력팽창 및 아크 회전에 의한 배전급 $SF_6$ 복합소호부 개발 연구)

  • Lee, B.W.;Sohn, J.M.;Kang, J.S.;Choe, W.J.;Kim, Y.K.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.919-921
    • /
    • 2000
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. In this research, the principle of the interrupting techniques are given and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Wind Farm Siting in Mountainous Terrain By Geomorphometric Characterization (지형형태 분류에 의한 산악지형 내 풍력단지 입지평가)

  • Kim, Hyun Goo;Hwang, Hyo Jung;Kang, Yong Heack;Yun, Chang Yeol;Jung, Bi Rin;Song, Kyu Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2014
  • To develop a wind farm in a mountainous terrain like Korea, it is generally more advantageous to install wind turbines along a mountain ridge where has relatively better wind resource because that is open in all directions and free from shielding by the surrounding topography. In this study, the SRTM (Shuttle Radar Topography Mission) v4.1 3 arc-second resolution digital elevation database and the geomorphometric characterization software LandSerf v2.3 are used to extract ridge lines for assessing a wind farm siting in mountainous terrain. The effectiveness of wind farm siting along a ridge line is confirmed that the most of wind turbines in the Gangwon, Taegisan, and Maebongsan wind farms in Korea's mountainous terrain are placed along the primary and secondary ridge lines where wind resource is relatively outstanding.

Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine (증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향)

  • Yoon, In-Soo;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마를 이용한 사불화탄소 저감)

  • Lee, Chae Hong;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.485-490
    • /
    • 2011
  • Tetrafluoromethane($CF_4$) has been used as etching and chamber cleaning gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetime which causes the global warming effect. We have developed a waterjet gliding arc plasma system in which plasma is combined with waterjet and investigated optimum operating conditions for efficient $CF_4$ destruction through enlarging discharge region and producing large amount of OH radicals. The operating conditions are waterjet flow rate, initial $CF_4$ concentration, total gas flow rate, specific energy input. Through the parametric studies, the highest $CF_4$ destruction of 97% was achieved at 2.2% $CF_4$, 7.2 kJ/L SEI, 9 L/min total gas flow rate and 25.5 mL/min waterjet flow rate.

Analysis Of Dielectric Recovery Characteristics for $SF_6$ Gas-Blast AFC ($SF_6$아크의 절연회복특성 해석)

  • Song, Gi-Dong;Lee, Byeong-Yun;Park, Gyeong-Yeop;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.273-284
    • /
    • 2002
  • In this paper, computer simulations of the physical Phenomena occurring in the arc region before and after current zero were carried out to evaluate the dielectric recovery characteristics of two types of double-flow nozzles. A commercial CFD Program "PHOENICS" is used for the simulation and the user-coded subroutines to consider the arcing phenomena were added to this program by the authors. The computed results were verified by the comparison with the test results presented by the research group of BBC. In order to investigate the state of the arc region after current zero, the simulation was carried out with four steps. They are cold gas flow analysis, steady state arc simulation, transient arc simulation before current zero, transient hot gas flow simulation after current zero. The semi-experimental arc radiation model is adapted to consider the radiation energy transport and Prandtl′s mixing length model is employed as the turbulence model. The electric field and the magnetic field were calculated with the same grid structure used for the simulation of the flow field. The streamer criterion was introduced to evaluate the dielectric recovery characteristics after current zero. Compared with the results obtained by assuming the current zero state in the former studies, it has been found that the results obtained by considering the state before current zerowere more accurate.

Arc Discharge Sensor having Noise Immunity to Ambient Light (주변광 영향을 받지 않는 아크방전 감지 센서)

  • Roh, Hee Hyuk;Seo, Yong Ma;Khishigsuren, J.;Choi, Kyoo Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.726-728
    • /
    • 2013
  • Optoelectronic arc discharge sensor was used to detect arc discharge inside power distribution panel. Arc discharge is fatal to power system once it begins, thus preventive detection is necessary before power failure occurs. Optoelectronic detection method was used to avoid direct electrical contact to power apparatus inside power distribution panel. 180 degree detection angle and detection range far exceeding 6m, which was sufficient for monitoring purpose, was achieved using the photodiode having $7.5mm^2$ of active surface area and flash source with $0.4cal/cm^2$ energy density, which is equivalent to 1.9J with $2.16cm^2$ emitting area. The response speed of arc discharge sensor was measured to be below 1 msec. The above optoelectronic arc discharge sensor was measured to be sensitive enough to detect 0.94 pC charge.

  • PDF

Development of DC Arc Generator to protect against Malfunctions and Fires caused by Arcing (아크 발생에 따른 고장 및 화재를 보호하기 위한 직류 아크 Generator 개발)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.123-128
    • /
    • 2021
  • As the spread of DC power distribution systems increases, the occurrence of failures and fire accidents are also increasing. In particular, the ESS fire accident, which is a component of the smart grid, and the fire accident of the solar power system, which is a direct current system, are caused by problems in the electrical connection between system components as the supply of new and renewable energy rapidly increases and old facilities increase. An arc that can cause a direct fire by releasing the induced light and heat has been pointed out as one of the causes of fire. Therefore, the problem of such an arc defect is that it is impossible to block an arc accident in advance with the existing overcurrent circuit breaker and earth leakage circuit breaker. In this paper, we intend to develop a test equipment that satisfies international standardization and to develop a DC arc generator to protect against failure and fire caused by arcing.