• Title/Summary/Keyword: Arbuscular mycorrhizae

Search Result 39, Processing Time 0.025 seconds

Effects of Arbuscular Mycorrhizae on Growth and Mineral Nutrient Contents in Trifoliate Orange Seedling (Arbuscular Mycorrhizae가 탱자 유묘의 생육과 무기양분 함량에 미치는 영향)

  • Oh, Hyun-Woo;Kim, Sang-Youb;Han, Hae-Ryong;Moon, Doo-Khil;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 1998
  • The effect of arbuscular mycorrhizae(AM) on the growth of trifoliate orange seeding were investigated in volcanic ash soil. Trifoliate orange is used as a root stock of citrus in Cheju island. Seedings innoculated with AM fungi were grown for 16 weeks in pots of various levels of fertilizer. Growth characteristics and mineral nutrient contents were measured and spores of AM fungi colonized were identified. Seventy % of the replicsted pots of seedings were colonized by AM in the treatment of high level fertilizer and additional phosphate (40g of 21-17-17 complex fertilizer and 50g of fused phosphate added to 50L of soil). In treatments of low levels fertilizer or without fused phosphate addition, the pots colonized were less than 20 %. Colonization of trifoliate seedings with AM fungi greatly increased the growth of seedings. Shoot length and weight of shoot and root positively regressed on AM colonization ratio. AM colonization caused higher concentrations of P, Cu and Mg in plant, and the relations were significant at 5 % level. Contents of N and Zn in plants also tended to increase, while that of Ca to decrease, with increasing colonization ratio. Four species of AM fungi - Glomus deserticola, G. rubiforme, G. vesiculiferum and Acaulospora sp, - were found in the soil where roots of trifoliate orange as an innoculation materials were collected. All of the 4 species were found in the inoculated pot soils after the seedling growth, indicating that these species can be colonized in trifoliate orange roots.

  • PDF

Contribution to the Checklist of Soil-inhabiting Fungi in Korea

  • Lee, Seon-Ju;Hong, Seung-Beom;Kim, Chang-Yung
    • Mycobiology
    • /
    • v.31 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • A total of 82 genera and 271 species of soil-inhabiting fungi including saprobic, nematode-trapping, and arbuscular mycorrhizal but plant pathogenic fungi published hitherto in South Korea are listed with the information on geographic location, habitat, vegetation when available, and relevant literatures.

Growth Stimulation of Mulberry Trees in Unsterilized Soil under Field Conditions with VA Mycorrhizal Inoculation (VA내생균근이 뽕나무의 생장에 미치는 영향)

  • 김중채;최연홍;문재유;김주읍
    • Journal of Sericultural and Entomological Science
    • /
    • v.26 no.2
    • /
    • pp.7-10
    • /
    • 1984
  • Mulberry Seedlings germinated and grown under green house conditions were inoculated with Glomus mosseae, Mosse and Trappe (a Kind of Vesicular arbuscular mycorrhizae) prior to outplanting into unsterilized soil. They were grown on phosphate deficient soil for 6 months after planting. Shoot length, stem diameter and leaf yield of the inoculated plants were found to be significantly greater than uninoculated ones. It was observed in foliar mineral content that the levels of N, P$_2$O$\sub$5/, CaO of the inoculated plants were higher but the level of MgO of the inoculated plants was lower than the uninoculated ones. In the mineral content of roots, it was observed that the level of P$_2$O$\sub$5/ was higher but the level of N was lower significantly in the inoculated plants than the uninoculated ones.

  • PDF

Factors related to the growth of arbuscular mycorrhizal fungi in the plant roots (식물뿌리에서 Arbuscular 내생균근 균의 성장에 작용하는 요인들)

  • Lee, Sang-Sun;Eom, Ahn-Heum;Lee, Seok-Koo
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.160-171
    • /
    • 1994
  • Microscopic observations of arbuscular mycorrhizae (AM) were done with the colonizations of AM and the determinations of chitin in the plant roots of Sorghum bicolor, Cassia mimosoides, Capsicum annuum and Allium fistulosum. The intercellular and intracellular hyphae, arbuscules and vesicles were microscopically observed, according to increases of colonization of AM in the roots of four plants. The growth of AM fungi appeared sigmoid with the cultivation days after inoculation. The growth of AM fungi were inversely influenced by the additions of commercial fertilizers, P

  • PDF

Community Structures of Arbuscular Mycorrhizal Fungi in Soils and Plant Roots Inhabiting Abandoned Mines of Korea

  • Park, Hyeok;Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.277-282
    • /
    • 2016
  • In this study, we collected rhizosphere soils and root samples from a post-mining area and a natural forest area in Jecheon, Korea. We extracted spores of arbuscular mycorrhizal fungi (AMF) from rhizospheres, and then examined the sequences of 18S rDNA genes of the AMF from the collected roots of plants. We compared the AMF communities in the post-mining area and the natural forest area by sequence analysis of the AMF spores from soils and of the AMF clones from roots. Consequently, we confirmed that the structure of AMF communities varied between the post-mining area and the natural forest area and showed significant relationship with heavy metal contents in soils. These results suggest that heavy metal contamination by mining activity significantly affects the AMF community structure.

Effects of Arbuscular Mycorrhiza Inoculation and Phosphorus Application on Early Growth of Hot Pepper(Capsicum annum L.) (Arbuscular mycorrhiza의 접종방법 및 인산시용량이 고추(Capsicum annum L.)의 초기생장에 미치는 영향)

  • Park, Hyang-Mee;Kang, Hang-Won;Kang, Ui-Gum;Park, Kyeong-Bae;Lee, Sang-Sun;Song, Sung-Dahl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study was conducted to examine the effects of Arbuscular Mycorrhizae inoculation and phosphorus application on early growth of hot pepper. Gigaspora margarita and Acaulospora spinosa were chosen for this investigation and inoculated into soils of different P levels by varying inoculation time and density. After treatment, some relevant growth responses of hot pepper were measured. Regardless of soil P levels, hot peppers treated with arbuscular mycorrhizal fungi had 5~34% more fresh weight than those untreated, but the effect of inoculation time and density was not different between two species. With decreased P levels, the infection rate and dependency of hot peppers increased. The content of P and K of AMF-inoculated hot peppers increased with increasing P levels, but the shoot to root ratio of those elements decreased. The results of this study showed that inoculation of AMF would be effective in promoting growth of hot pepper seedlings and increase transplant adaptation due in part to the resulted higher root development.

  • PDF

Ecological Study on Arbuscular Mycorrhizae(AM) at Coastal Reclaimed Lands (해안(海岸) 간척지(干拓地)에서 Arbuscular Mycorrhizae(AM)에 관한 생태학적(生態學的) 연구(硏究))

  • Koh, Sung-Duk
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.394-409
    • /
    • 1994
  • The symbiotic activities of arbuscular mycorrhizal fungi(AMF) such as spore density, symbiotic intensity and vesicle density, phytomasses of higher plants such as Calamagrostis epigeios, Imperata cylindria, Artemisia scoparia, Aster tripolium and Sonchus brachyotus and seasonal change of the AMF activities, electric conductivity and zinc contents in plant and soil were determined in the rhizospheres of higher plants at abandoned old coastal reclaimed lands, where constructed in 12 and 30 years ago. If plants of reclaimed land classified to salinity, symbiotic activities of AMF were high in order of obligate halophyte, facultative halophyte and glycophyte. Also, those plants classified to life form, symbiotic activities of AMF were high in order of annual, biennial and perennial plants. Seasonal variation of spore density, one of symbiotic activities showed that the plateau density maintained continuously from the end of growing season of the higher plants to next spring. For this reason, it regarded that reproduction of AMF spore would be formed in autumn, when the higher plants will be developed. Seasonal change of symbiosis intensity, other symbiotic activities, however, showed that the highest symbiosis intensity occurred in spring and summer but the lowest in autumn. In relationships among symbiotic activities, spore density was directry proportional increase of symbiosis intensity. Moreover, phytomass of higher plants also was directly proportional to increase the spore density as well as symbiosis intensity. Vesicle density, however, did not any correlation with the phytomass, spore density and symbiosis intensity. From these results, it can know that both spore density and symbiosis intensity are strongly possible to use as the measure of symbiotic activity owing to symbiosis of tho-AMF, the more absorption of zinc by the higher plants carried out the less concentration of zinc in the soil.

  • PDF

Effect of Two Glomus Species Inoculations on Survival, Photosynthetic Capacity, Growth, Morphology ana Root Ginsenoside Content of Panax quinquefolius L.

  • Fournier, Anick R.;Khanizadeh, Shahrokh;Gauthier, Louis;Gosselin, Andre;Dorais, Martine
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Vesicular-arbuscular mycorrhizae (VAM) fungi naturally colonise American ginseng roots and this relationship is highly beneficial to enhance plant productivity. Our goal was to determine the effect of adding two Glomus species (Glomus etuticatum, G. intraradices) on survival, photosynthetic capacity, growth, morphology and root ginsenoside content of one-year-old American ginseng plants grown in a broadleaf forest. While our study revealed that VAM inoculations significantly affected root morphology and Re ginsenoside content, the survival, photosynthetic capacity and root growth of American ginseng plants were not significantly influenced by VAM inoculations. Surface area and volume of rootlets were 16-25% higher for ginseng grown in VAM-inoculated soil compared to those grown in the control plots. Also, Re ginsenoside content was 18 % higher in YAM-inoculated roots compared to controls.

Vesicular-Arbuscular Mycorrhizal Fungi Found from the Soils of Plant Communities (식물(植物) 군락(群落)에서 VA 내생균근(內生菌根) 발견(發見))

  • Ka, Kang-Hyeon;Lee, Sang-Sun;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.18 no.4
    • /
    • pp.191-197
    • /
    • 1990
  • Vesicular-arbuscular mycorrhizal fungi were isolated from the soils of three different plant communities (Cassia mimsoides var. nomame, Themeda triandra var. japonica, Miscanthus sinensis var. purpurascens). Eight azygospores or chlamydospores of VA-mycorrhizal fungi were identified (eight species of four genera), and six among them newly described in Korea (six species of two genera); Glomus aggregatum, Gl. ambisporum, Gl. geosporum, Gl. mosseae, Scutellospora coralloidea, Sc. heterogama.

  • PDF

Vesicular-Arbuscular Mycorrhizal Fungi Found in the Soils around the Roots of the Leguminous Plants (콩과(科) 식물(植物) 주변(周邊)의 토양(土壤)에서 발견(發見)되는 VA-mycorrhizae)

  • Kim, Jun-Tae;Kim, Chong-Kyun
    • The Korean Journal of Mycology
    • /
    • v.20 no.3
    • /
    • pp.171-182
    • /
    • 1992
  • Ten species of the leguminous plants were collected from the soils around Kongiu National University $(127^{\circ}\;08'\;41"\;E,\;36^{\circ}\;28'\;04"\;N)$. All of them were infected with VA-mycorrhizae in the root tissues, and twelve azygospores or chlamydospores of VA-mycorrhizal fungi were found and identified (twelve species of four genera); Acaulospora denticulata, A. scrobiculata, Gigaspora margarita, Glomus australe, Gl. constrictum, Gl. convolutum, Gl. diaphanum, Gl. flavisporum, Gl. glomerulatum, Gl. manihotis, Gl. tortuosum, Scleroystis microcarpus. Seven among them were not reported in Korea yet (seven species of three genera); A. denticulata, Gl. australe, Gl. constrictum, Gl. convolutum, Gl. diaphanum, Gl. flavisporum, S. microcarpus.

  • PDF