• Title/Summary/Keyword: Arbitrary-view image

Search Result 38, Processing Time 0.032 seconds

Compensation Method for Occluded-region of Arbitrary-view Image Synthesized from Multi-view Video (다시점 동영상에서 임의시점영상 생성을 위한 가려진 영역 보상기법)

  • Park, Se-Hwan;Song, Hyuk;Jang, Eun-Young;Hur, Nam-Ho;Kim, Jin-Woong;Kim, Jin-Soo;Lee, Sang-Hun;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1029-1038
    • /
    • 2008
  • In this paper, we propose a method for an arbitrary-view image generation in multi-view video and methods for pre- and post-processing to compensate unattended regions in the generated image. To generate an arbitrary-view image, camera geometry is used. Three dimensional coordinates of image pixels can be obtained by using depth information of multi-view video and parameter information of multi-view cameras, and by replacing three dimensional coordinates on a two dimensional image plane of other view, arbitrary-view image can be reconstructed. However, the generated arbitrary-view image contains many unattended regions. In this paper, we also proposed a method for compensating these regions considering temporal redundancy and spatial direction of an image and an error of acquired multi-view image and depth information. Test results show that we could obtain a reliably synthesized view-image with objective measurement of PSNR more than 30dB and subjective estimation of DSCQS(double stimulus continuous quality scale method) more than 3.5 point.

View Synthesis and Coding of Multi-view Data in Arbitrary Camera Arrangements Using Multiple Layered Depth Images

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a new view synthesis technique for coding of multi-view color and depth data in arbitrary camera arrangements. We treat each camera position as a 3-D point in world coordinates and build clusters of those vertices. Color and depth data within a cluster are gathered into one camera position using a hierarchical representation based on the concept of layered depth image (LDI). Since one camera can cover only a limited viewing range, we set multiple reference cameras so that multiple LDIs are generated to cover the whole viewing range. Therefore, we can enhance the visual quality of the reconstructed views from multiple LDIs comparing with that from a single LDI. From experimental results, the proposed scheme shows better coding performance under arbitrary camera configurations in terms of PSNR and subjective visual quality.

  • PDF

Voxel-wise UV parameterization and view-dependent texture synthesis for immersive rendering of truncated signed distance field scene model

  • Kim, Soowoong;Kang, Jungwon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • In this paper, we introduced a novel voxel-wise UV parameterization and view-dependent texture synthesis for the immersive rendering of a truncated signed distance field (TSDF) scene model. The proposed UV parameterization delegates a precomputed UV map to each voxel using the UV map lookup table and consequently, enabling efficient and high-quality texture mapping without a complex process. By leveraging the convenient UV parameterization, our view-dependent texture synthesis method extracts a set of local texture maps for each voxel from the multiview color images and separates them into a single view-independent diffuse map and a set of weight coefficients for an orthogonal specular map basis. Furthermore, the view-dependent specular maps for an arbitrary view are estimated by combining the specular weights of each source view using the location of the arbitrary and source viewpoints to generate the view-dependent textures for arbitrary views. The experimental results demonstrate that the proposed method effectively synthesizes texture for an arbitrary view, thereby enabling the visualization of view-dependent effects, such as specularity and mirror reflection.

The Development of real-time system for taking the dimensions of objects with arbitray shape

  • Chung, Yun-Su;Won, Jong-Un;Kim, Jin-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1523-1526
    • /
    • 2002
  • In this paper, we propose a method fur measuring the dimensions of an arbitrary object using geometric relationship between a perspective projection image and a rectangular parallelepiped model. For recognizing the vertexes of the rectangular parallelepiped surrounding an arbitrary object, the method adopts a strategy that derives the equations for vertex recognition from the geometrical relationships for image formation between 2D image and the rectangular parallelepiped model. extracts from 2D image with vertical view features (or junctions) of minimum quadrangle circumscribing an arbitrary shape object, and then recognizes vertexes from the features with the equations. Finally, the dimensions of the object are calculated from these results of vertex recognition. By the experimental results, it is demonstrated that this method is very effective to recognize the vertexes of the arbitrary objects.

  • PDF

An Improvement of Computation of Rotation Matrix for a 3D Image about an Arbitrary Axis (임의의 축에 관한 3차원 영상의 회전 행렬 계산 속도의 개선)

  • Kim, Eung-Gon;Heo, Yeong-Nam;Lee, Ung-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.390-396
    • /
    • 1995
  • One of the advantages of computer graphics is that it enables to view an object on different viewpoints and different angles. Therefore, a computer graphics system should be able to rotate an arbitrary object by an arbitrary angle about an arbitrary axis. This is usually done by rotating vertices that represent an object and connecting them. Hence an image may have many vertices, it is important to be able to rotate each of them quickly. Therefore, this paper is interested in a rotation matrix computation method that consists of the smallest number of computational steps. This pater proposes an algorithm that computes rotation matrix to rotate a 3 dimensional image about an arbitrary axis quickly.

  • PDF

View synthesis in uncalibrated images (임의 카메라 구조에서의 영상 합성)

  • Kang, Ji-Hyun;Kim, Dong-Hyun;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.437-438
    • /
    • 2006
  • Virtual view synthesis is essential for 3DTV systems, which utilizes the motion parallax cue. In this paper, we propose a multi-step view synthesis algorithm to efficiently reconstruct an arbitrary view from limited number of known views of a 3D scene. We describe an efficient image rectification procedure which guarantees that an interpolation process produce valid views. This rectification method can deal with all possible camera motions. The idea consists of using a polar parameterization of the image around the epipole. Then, to generate intermediate views, we use an efficient dense disparity estimation algorithm considering features of stereo image pairs. Main concepts of the algorithm are based on the region dividing bidirectional pixel matching. The estimated disparities are used to synthesize intermediate view of stereo images. We use computer simulation to show the result of the proposed algorithm.

  • PDF

A Novel Approach to Mugshot Based Arbitrary View Face Recognition

  • Zeng, Dan;Long, Shuqin;Li, Jing;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.239-244
    • /
    • 2016
  • Mugshot face images, routinely collected by police, usually contain both frontal and profile views. Existing automated face recognition methods exploited mugshot databases by enlarging the gallery with synthetic multi-view face images generated from the mugshot face images. This paper, instead, proposes to match the query arbitrary view face image directly to the enrolled frontal and profile face images. During matching, the 3D face shape model reconstructed from the mugshot face images is used to establish corresponding semantic parts between query and gallery face images, based on which comparison is done. The final recognition result is obtained by fusing the matching results with frontal and profile face images. Compared with previous methods, the proposed method better utilizes mugshot databases without using synthetic face images that may have artifacts. Its effectiveness has been demonstrated on the Color FERET and CMU PIE databases.

RAY-SPACE INTERPOLATION BYWARPING DISPARITY MAPS

  • Moriy, Yuji;Yendoy, Tomohiro;Tanimotoy, Masayuki;Fujiiz, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.583-587
    • /
    • 2009
  • In this paper we propose a new method of Depth-Image-Based Rendering (DIBR) for Free-viewpoint TV (FTV). In the proposed method, virtual viewpoint images are rendered with 3D warping instead of estimating the view-dependent depth since depth estimation is usually costly and it is desirable to eliminate it from the rendering process. However, 3D warping causes some problems that do not occur in the method with view-dependent depth estimation; for example, the appearance of holes on the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Depth discontinuity causes artifacts on the rendered image. In this paper, these problems are solved by reconstructing disparity information at virtual camera position from neighboring two real cameras. In the experiments, high quality arbitrary viewpoint images were obtained.

  • PDF

A Study of Rectification of Stereo Images for Synthesis of Arbitrary View Images (임의 시점 영상 합성을 위한 스테레오 영상 보정 기법에 관한 연구)

  • Ahn, Jin-Ho;Jang, Heung-Yeop;Lee, Je-Ho;Kwon, Yong-Moo;Kim, Sang-Kuk;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.442-444
    • /
    • 1996
  • This paper presents a new image rectification method using stereo image pairs to synthesize arbitrary viewing images. The image rectification is a preprocessing procedure that generates a vertically aligned images and makes epipolar lines collinear. The proposed rectification method has more robustness by considering the real situations such as the mismatch of pan angle, tilt angle and vertical shifting of cameras than previous method[5] which considers only pan angle. We evaluate the proposed method by comparison with previous method using synthesized images.

  • PDF

Multi-view Display with Hologram Screen using Three-dimensional Bragg Diffraction

  • Okamoto, Masaaki;Shimizu, Eiji
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • Multi-view function is important to three-dimensional displays without dedicated glasses. It is the reason that the observers earnestly desire to change their positions freely. Multi-viewing is also principal to the reality of three-dimensional (3D) image displayed on the screen. The display of projection type has the advantage that the number of viewing points can be easily increased according to the number of projectors. The authors research on multi-view projection display with hologram screen. Powerful directionality of the diffracted beam from hologram screen is required unlike two-dimensional (2D) display. We developed a new method that all diffracted beams satisfied the same Bragg condition and became sufficiently bright to observe the 3D image under usual indoor light. The principle is based on the essential Bragg diffraction in the three-dimensional space. Owing to such three-dimensional Bragg diffraction we achieved an excellent hologram screen that could be multiple reconstructed in spite of single recording. This hologram screen is able to answer arbitrary numbers of viewing points within wide viewing zone. The distortion of 3D image becomes also sufficiently small with the method of dividing the cross angle between illumination and diffraction beam.