• Title/Summary/Keyword: Arachis

Search Result 108, Processing Time 0.025 seconds

A Protocol for High Frequency Plant Conversion from Somatic Embryos of Peanut (Arachis hypogaea L. cv. DRG-12)

  • Rani A. Raja;Padmaja G.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2005
  • A protocol was developed for somatic embryogenesis with 100% induction rate from immature zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) cultured on MS medium containing $18.09\;{\mu}M$ 2,4-D. The frequency of somatic embryogenesis (31.7%) as well as the number of somatic embryos induced per explant (6.6) decreased when the concentration of 2,4-D was increased to $72.4\;{\mu}M$. Morphologically abnormal somatic embryos were observed at a frequency of 43.3% on MS medium containing $72.4\;{\mu}M$ 2,4-D. Somatic embryos isolated from 30-day-old cultures of immature zygotic embryo axes exhibited precocious germination with varied responses when placed on MS basal medium with 3% sucrose. Maximum shoot induction (80.0%) was observed from somatic embryos isolated from 60-day-old cultures of immature zygotic embryo axes when placed as a clump rather than individually on MS medium supplemented with $26.63\;{\mu}M$ BA and $0.54\;{\mu}M$ NAA. Shoots developed from somatic embryos rooted with higher frequency (93.3%) on Blaydes' medium containing $5.4\;{\mu}M$ NAA.

Interactive Effect of Nitrogen and Sulphur on Yield and Quality of Groundnut (Arachis hypogea L.)

  • Jamal Arshad;Fazli Inayat Saleem;Ahmad Saif;Abdin Malik Zainul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.519-522
    • /
    • 2006
  • Randomized field experiments were conducted to study the interactive effect of sulphur (S) and nitrogen (N) on seed, oil and protein yield of two cultivars of groundnut {Arachis hypogea: cv Amber $(V_{1})$: cv Kaushal, $(V_{2})$.} Two dosage levels of sulphur ($0\;and\;20kg\;ha^{-1}$) and two dosage levels of N ($23.5\;and\;43.5kg\;ha^{-1}$) in various combinations were tested as micronutrient treatments, $T_{1},\;T_{2},\;and\;T_{3}$. Results indicated significant enhancement of the yield components namely seed and oil yield as well as seed protein. Maximum response was observed with treatment $T_{3}$(having 20kg S and 43.5kg N $ha^{-1})$. Increase in seed and oil yields of 90% and 103% in $V_{1}$, and 79 and 90% in $V_{2}$, respectively were recorded as compared to the control treatment $T_{1}$(having 0kg S and 23.5kg N $ha^{-1}$). Effect of S and N interaction was observed on protein, N and S content in seeds. The results obtained by these experiments clearly suggest that judicious balanced application of N and S could improve the yield.

Local Variation of Genetic Parameters of Arachis Hypogaea, L. (땅콩(Arachis Hypogaea, L.) 품종들의 주요형질에 대한 유전통계량의 지역간 변동)

  • Jung-Il Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.240-247
    • /
    • 1983
  • Heritability of flowering date, length of main stem, weight of 100 grains and number of shells per square meter in peanut were high with low local variation. There was positive genotypic correlation between length of main stem and yield, No. of shells per square meter and matured seed ratio, No of shells per square meter and yield 100 grain weight and yield but was negative genotypic correlation between flowering date and yield. With the view of path-coefficients, length of main stem, number of shells per square meter showed highly direct effects at.. all locations.

  • PDF

Mapping of Quantitative Trait Loci for Yield and Grade Related Traits in Peanut (Arachis hypogaea L.) Using High-Resolution SNP Markers

  • Liang, Yuya;Baring, Michael R.;Septiningsih, Endang M.
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.454-462
    • /
    • 2018
  • Yield and grade are the key factors that affect production value of peanut. The objective of this study was to identify QTLs for pod yield, hundred-seed weight, and total sound mature kernel (TSMK). A total of 90 recombinant inbred lines, derived from Tamrun OL07 and a breeding line Tx964117, were used as a mapping population and planted in Brownfield and Stephenville, Texas. A genetic map was developed using 1,211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-seq). A total of 10 QTLs were identified above the permutation threshold, three for yield, three for hundred-seed weight and four for TSMK, with LOD score values of 3.7 - 6.9 and phenotypic variance explained of 12.2% - 35.9%. Among those, there were several QTLs that were detected in more than one field experiment. The commonly detected QTLs in this study may be used as potential targets for future breeding program to incorporate yield and grade related traits through molecular breeding.

Genome-Wide Comprehensive Analysis of the GASA Gene Family in Peanut (Arachis hypogaea L.)

  • Rizwana B.Syed Nabi;Eunyoung Oh;Sungup Kim;Kwang-Soo Cho;Myoung Hee Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.231-231
    • /
    • 2022
  • The GASA protein (Gibberellic acid-stimulated Arabidopsis) are family of small cysteine-rich peptides found in plants. These GASA gene family mainly involved in biotic/abiotic stress responses and plant development. Despite being present in a wide plant species, their action and functions still remain unclear. In this study, using the in-silico analysis method we identified 41 GASA genes in peanuts (Arachis hypogaea L.). Based on the phylogenetic analysis 41 GASA genes are classified in the four major clusters and subclades. Mainly, clusters IV and III comprise the majority of GASA genes 15 and 11 genes respectively, followed by cluster I and cluster II with 9 and 6 genes respectively. Additionally, based on in-silico analysis we predicted the post-transcriptional and post-translational changes of GASA proteins under abiotic stresses such as drought and salt stress would aid our understanding of the regulatory mechanisms. Hence, a further study is planned to evaluate the expression of these GASA genes under stress in different plant tissues to elucidate the possible functional role of GASA genes in peanut plants. These findings might offer insightful data for peanut advancement.

  • PDF