• Title/Summary/Keyword: Arabidopsis histidine kinase 3

Search Result 2, Processing Time 0.019 seconds

Characterization of Arabidopsis Histidine Kinase 3 and Proteomic Analysis of Its Mutant (애기장대 histidine kinase 3 (AHK3)의 특성과 결손돌연변이체인 ahk3의 프로테옴 분석)

  • Liang Ying-Shi;Cha Joon-Yung;Ermawati Netty;Jung Min-Hee;Lee Kon-Ho;Son Dae-Young
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.447-453
    • /
    • 2006
  • Histidine kinase plays important roles in signal transduction in plant. We characterized the function of Arabidopsis histidine kinase 3 (AHK3) and analyzed the expression patterns of genes and proteins in its mutant ahk3 by trans-zeatin (t-zeatin). The ahk3 exhibited decreased sensitivity to t-zeatin during callus formation, seedling growth, and leaf senescence. From proteomic analysis of ahk3, eukaryotic translation initiation factor 5A-2, auxin binding glutathione S-transferase, and NDPK1 were identified not to be induced by t-zeatin, when compared to the wild-type. In addition, the expression levels of ARR4 and ARR16 among A-type response regulators (ARRs) markedly decreased in ahk3 by t-zeatin treatment. These results suggest that AHK3 plays an important role in cytokinin signaling and the proteins identified from proteomic analysis and specific ARRs, ARR4 and ARR16 may be directly or indirectly associated in AHK3-mediated cytokinin signaling.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.