• Title/Summary/Keyword: Aquifer

Search Result 749, Processing Time 0.032 seconds

A KINETIC ANALYSIS OF ORGANIC RELEASE FROM THE AQUIFER SOIL IN RIVERBANK/BED FILTRATION

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Experiments were performed to estimate the organic release from the aquifer soil in riverbank and/or riverbed filtration via a kinetic approach. Organic release was assumed as a reaction of first order regarding concentrations in both soil and water phases. The reaction rate constants were obtained by comparing the model predictions with the experimental data of organic release reaction and the equilibrium distribution of organic matter between water and soil phases. Results show that the organic release from the aquifer soil was not negligible under normal conditions in Korea reaching 4.7mg-COD/L-day. This indicates that manganese and iron start to be released from aquifer soil in the riverbank filtration in the middle reach of the Nakdong river if the travel time of the filtrate exceeds about 5 days. It was also seen that the COD of the soil organic matter was 0.89mg-COD/mg-OM and that 65% of the COD was BOD5.

PREDICTION OF UNMEASURED PET DATA USING SPATIAL INTERPOLATION METHODS IN AGRICULTURAL REGION

  • Ju-Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2004
  • This paper describes the use of spatial interpolation for estimating seasonal crop potential evapotranspiration (PET) and irrigation water requirement in unmeasured evaporation gage stations within Edwards Aquifer, Texas using GIS. The Edwards Aquifer area has insufficient data with short observed records and rare gage stations, then, the investigation of data for determining of irrigation water requirement is difficult. This research shows that spatial interpolation techniques can be used for creating more accurate PET data in unmeasured region, because PET data are important parameter to estimate irrigation water requirement. Recently, many researchers are investigating intensively these techniques based upon mathematical and statistical theories. Especially, three techniques have well been used: Inverse Distance Weighting (IDW), spline, and kriging (simple, ordinary and universal). In conclusion, the result of this study (Table 1) shows the kriging interpolation technique is found to be the best method for prediction of unmeasured PET in Edwards aquifer, Texas.

  • PDF

Ground water control in the open cut site on soft ground with aquifer (하부 대수층이 존재하는 연약지반상의 개착터널에 있어서 지하수 처리 사례)

  • Jeoung, Jae-Hyeung;Hasimoto, Tadasi;Nagaya, Junichi;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1420-1425
    • /
    • 2005
  • In a case of an example in Korea, some areas of Yangsan near Busan which exist on soft ground with aquifer, showed us some difficulties of the preparing for housing site and earth structures. From these experiences, recently, the development and research of technology is getting increased, which minimize the influence to the environment from construction work, which is in an agreement with eco-friendly construction in terms of the reasonable processing of ground water. On this case study, one area of Japan that has many site on soft ground with aquifer, is introduced as the reasonable processing of ground water. The applications of the technology for ground water in Korea are discussed.

  • PDF

Development of a simplified model to maximize operating efficiency of heat exchanger (지중 열 교환기 운영 효율의 최적화를 위한 단순화 모델의 개발)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Kim, Seong-Kyun;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.481-484
    • /
    • 2007
  • Efficiency of geothermal heat exchanger operation has close relation with temperature variation of the aquifer where the exchanger is installed. In the case of long-term operation, temperature distribution of the aquifer would be similar to that of water circulating in the exchanger, which causes the decrease of heat exchange rate. Therefore, the operation period of the heat exchanger should be controlled so that the temperature distribution of the aquifer is recovered. We developed a model to determine the operation period to acquire the optimal efficiency under the given aquifer condition. With this suggested method, when we use closed-loop heat exchanger, the operation efficiency of the geothermal heat exchanger is expected to be maximized by determining the optimal operation period.

  • PDF

FEFLOW를 이용한 천부지열 활용 예측 모델링

  • 심병완;송윤호;김형찬
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.399-402
    • /
    • 2004
  • An aquifer thermal energy storage (ATES) model is simulated by FEFLOW according to the scenario of heat pump operation in two layered confining aquifer. The scenario is consisted of 4 steps: 90 days pumping (west well) and waste water injection (east well: 35 $^{\circ}C$), 90 day s stop, 90days pumping (east well) and waste water injection (west well: 5 $^{\circ}C$), and 95 days stop. The injection of the waste water is limited in the second layer and the first layer is aquitard. The temperature distribution at the surface shows low difference with reference temperature and opposit aspect with that of the second layer because the thermal transition through the first layer is very slow. Even though the simulated thermal transition in the aquifer system have a difference with real ATES system, optimal design and operate system can be developed with field tests and operational experience.

  • PDF

An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System (대수층 축열시스템의 열거동에 관한 실험적 연구)

  • 이세균;문병수;남승백;김기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1780-1787
    • /
    • 1992
  • Experiments have been performed on the thermal behavior in a liquid saturated porous medium in a system to simulate a single well aquifer thermal energy storage system. The principal interests in this study are the combined effects of forced and natural convection. Significant buoyancy flow due to natural convection is developed quickly as the temperature difference between the injection and original aquifer temperature increases. Theoretical model under simplified assumptions (called simple buoyancy flow model in this study) has been developed. The results of this model agree well with the experiments. The effects of buoyancy flow on the recovery factor are also examined in this study.

금강 부여 군수리 충적 대수층 조사를 위한 고해상도 지구물리탐사 - 탄성파 탐사 및 GPR 조사를 중심으로 -

  • 김형수;서만철;이철우;진세화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.287-291
    • /
    • 2003
  • To delineate the internal structures of alluvial aquifer, high resolution seismic and GPR methods were adopted in Buyeo Gunsu-Ri area. The result of seismic refraction survey shows the water table of the aquifer and the result of seismic reflection reveals the basement and somewhat dominant internal structures of alluvial aquifer. The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey. GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units the lower inclined heterogeneous strata and the upper horizontally stratified strata. According to the increase of demand for water resource using artificial recharge in alluvium, it is believed that the information acquired by high resolution geophysical methods will have an important roles for the effective and sustainable development and usage of groundwater in alluvial aquifer.

  • PDF

Simulation on Contaminant Transport in the Aquifer Affected by River Stage (하천 수위의 영향을 받는 대수층에서 오염원의 이동에 관한 모의실험)

  • 김민환
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.54-59
    • /
    • 1997
  • The river and groundwater are contaminated by pollution source of a waste landfill and others near river. The contaminant transport and response of aquifer parameters are studied in the aquifer affected by variation of river stage. First, the equation for component of variation velocity with river stage is developed by using the analytical solution of groundwater governing equation. The numerical model which considered component of variation velocity is constructed for the transport of mass by advection and dispersion. In order to verify a numerical scheme, the analytical solution is used. The numerical solution is coincided with the analytical one. Aquifer parameters of Nanjido are used as the data for numerical experiment. Second, the range of aquifer parameters is established in order to reponse contaminant transport in aquifer with river stage. The result of numerical experiment shows that the range of the storage coefficient except hydraulic conductivity and effective porosity is relatively sensitive to the contaminant transport. When the storage coefficient is the order of 10$\^$-2/, the response is very sensitive to the variation of river stage.

  • PDF

Groundwater Flow Modeling for a Finite Unconfined Sandy Aquifer in a Laboratory Scale (사질 자유면 대수층 모형에서의 지하수 모델링)

  • 이승섭;김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.188-193
    • /
    • 1999
  • Transport of pollutants in aquifer largely depends on groundwater flow which is governed by aquifer hydraulic parameters. Determination of these parameters and associated groundwater modeling become essential for adequate remediation of contaminate groundwater. The objective of this paper is to analyze groundwater flow and determine the optimum hydraulic parameters by performing groundwater modeling based on sensitivity analysis for unconfined sandy gavel aquifer constructed in a laboratory scale under various boundary condition. Results revealed that the simulated drawdown was lower than the observed drawdown irrespective of boundary conditions. and specific yield (S$_{y}$) had less effect on the grondwater flow than permeability (K) in the aquifer. Water balance analysis showed that the measured drawdown in neighboring observation wells during pumping was higher than either simulated or recovered water table. The indicated that a difference might exist in the water tables between aquifer and wells. The difference was investigated by time domain reflectometry (TDR) measurements on water contents in the region of water table and capillary fringe, and explained by a delayed response of water table during gravitational drainage as the water table was lowered as a result of pumping.g.

  • PDF