• Title/Summary/Keyword: Aqueous indirect carbonation

Search Result 4, Processing Time 0.021 seconds

Leaching of Ca, Fe and Si in Electric Arc Furnace Steel Slag by Aqueous Acetic acid Solution for Indirect Carbonation (간접탄산염화를 위한 전기로제강슬래그 중 Ca, Fe 및 Si 성분의 초산수용액 침출)

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • It has been reported that aqueous indirect carbonation process of calcium silicate mineral could be one of the most promising methods for $CO_2$ sequestration. The process consists of two main steps, extraction of Ca from calcium silicate and carbonation of the extracted solution by $CO_2$. Many types of acids such as HCl and $HNO_3$ can be used in the extraction step of the process. In the case of using aqueous acetic acid solution as the extraction solvent, acetic acid can be reproduced at the carbonation step of the extracted solution by $CO_2$ and recycled to extraction step for reuse it. Industrial by-products such as iron and steel slags are potential raw materials of the indirect carbonation process due to their high contents of calcium silicate. In this study, in order to examine the extraction efficiency of domestic electric arc furnace steel slag by aqueous acetic acid solution, extraction experiments of the slag were performed by using the aqueous acetic acid solutions of varying extraction conditions ; acetic acid concentrations, extraction temperatures and times.

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

The Extraction of Ca in Electric arc Furnace Slag for CO2 Sequestration (CO2고정화(固定化)를 위한 전기로제강(電氣爐製鋼)슬래그의 칼슘성분(成分) 침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Mineral carbonation has been proposed as a possible way for $CO_2$ sequestration. The electric arc furnace slags consist of calcium, magnesium and aluminum silicates in various combinations. If they could be used instead of natural mineral silicates for carbonation, considerable energy savings and $CO_2$ emissions reductions could be achieved. Indirect aqueous carbonation of the slags consists of two steps, extraction of calcium and carbonation. Acetic acid leaching of electric arc furnace slags had been already studied to extract Ca in them, but it was reported that the carbonation of the extracted $Ca^{2+}$ in the leached solution would suffer from too slow kinetics, even at high pressure of $CO_2$. In this work, to develop more efficient extraction of the electric arc furnace slags, hydrochloric acid leaching to separate calcium from them was studied, and the results were compared with the acetic acid ones. The phase boundary between $Ca^{2+}$ and $CaCO_3$ in the solution with pH was determined by thermodynamic calculations. Hydrochloric acid was more effective than acetic acid for the extraction of Ca in electric arc furnace slag, and there is a possibility to recycle an unreacted hydrochloric acid in the leached solution by electrolysis or evaporation.

Arsenic Removal Mechanism of the Residual Slag Generated after the Mineral Carbonation Process in Aqueous System (광물탄산화 공정 이후 발생하는 잔사슬래그의 수계 내 비소 제거 기작)

  • Kim, Kyeongtae;Latief, Ilham Abdul;Kim, Danu;Kim, Seonhee;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.377-388
    • /
    • 2022
  • Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.