• Title/Summary/Keyword: Aqueous

Search Result 7,410, Processing Time 0.033 seconds

Solubilization and Photosensitizing Properties of Some Anthracene Derivatives in Aqueous Micellar Solutions (수용성 미셀용액에서 몇 가지 안트라센 유도체의 가용화 및 감광화 성질)

  • Jeong Soo Ko;Dong Sul Han;Hyung Sik Oh;Byung Kwan Park;Chong Hyun Kim;Se Woung Oh
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.452-460
    • /
    • 1991
  • The chemical evidence for involvement of singlet oxygen during photoirradiation for 2-ethylanthracene [2-EA] and 9-phenylanthracene [9-PA] was based on the rapid decomposition of 1,3-diphenylisobenzofuran [DPBF] in methanol-water mixture and aqueous CTAB, and SDS micellar solutions. The average microenvironmental polarities of 2-EA and 9-PA were estimated by UV spectroscopic characteristics sensitive to the polarity of solvent. When 2-EA and 9-PA were solubilized in aqueous CTAB, SDS and Brij 35 solutions, their average microenvironmental polarities were polar, and their microenvironmental polarity parameter showed little dependence on the ionic properties of the micelles. The average microenvironmental polarity of 2-EA was similar to the polarity of 40% (w/w) aqueous ethanol, and that of 9-PA was similar to the polarity between 30 and 40% (w/w) aqueous ethanol. It was found that the greater part of these species might be distributed at the surface of micelles when they were solubilized in aqueous micellar solutions. The methanol-water mixture solution appeared to have characteristics more favorable for photooxidation reaction than aqueous micellar solutions.

  • PDF

Effect of Alcohols and Carboxylic Acids on Extraction Characteristics for 1,3-Propanediol by Aqueous Two Phases Systems (수상이성분계에 의한 1,3-프로판디올 추출특성에 대한 알콜과 카르복실산의 영향)

  • Hong, Yeon Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.575-579
    • /
    • 2013
  • 1,3-Propandiol is a promising chemical which can be produced from fermentation of glycerol because the application of 1,3-propanediol is mainly in the production of bio-polytrimethylene terephthalate (bio-PTT). However, the cost of downstream processes in the biological production of 1,3-propanediol can make a high portion in the total production cost due to the large amount of water and the by-produced carboxylic acids such as succinic, lactic and acetic acids in 1,3-propanediol fermentation broth. In this study, aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were applied to the recovery of 1,3-propanediol from its artificial aqueous solution. Formation of aqueous biphases in hydrophilic alcohols and phosphate salts was due to the salting-out effect of salts in bottom phase, thereby 1,3-propanediol in bottom phase was moved into top phase. Extraction efficiency for 1,3-propanediol was proportional to the polarity of hydrophilic alcohols and the basicity of salts and the maximum value of extraction efficiency was more than 98%. In the aqueous two-phases systems after extraction, there was no carboxylic acid in top phase. Therefore, it was concluded that the aqueous two-phases systems composed of hydrophilic alcohols and phosphate salts were effective for the selective recovery of 1,3-propanediol without any coextraction of carboxylic acids.

Steady Shear Flow Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 정상유동 특성)

  • Song, Ki-Won;Kim, Tae-Hoon;Chang, Gap-Shik;An, Seung-Kook;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • In order to investigate systematically the steady shear flow properties of aqueous po1y(ethylene oxide) (PEO) solutions having various molecular weights and concentrations, the steady flow viscosity has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear rates. The effects of shear rate, concentration, and molecular weight on the steady shear flow properties were reported in detail from the experimentally measured data, and then the results were interpreted using the concept of a material characteristic time. In addition, some flow models describing the non-Newtonian behavior (shear-thinning characteristics) of polymeric liquids were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was examined by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) At low shear rates, aqueous PEO solutions show a Newtonian viscous behavior which is independent of shear rate. At shear rate region higher than a critical shear rate, however, they exhibit a shear-thinning behavior, demonstrating a decrease in steady flow viscosity with increasing shear rate. (2) As an increase in concentration and/or molecular weight, the zero-shear viscosity is increased while the Newtonian viscous region becomes narrower. Moreover, the critical shear rate at which the transition from the Newtonian to shear-thinning behavior occurs is decreased, and the shear-thinning nature becomes more remarkable. (3) Aqueous PEO solutions show a Newtonian viscous behavior at shear rate range lower than the inverse value of a characteristic time $1/{\lambda}_E$, while they exhibit a shear-thinning behavior at shear rate range higher than $1/{\lambda}_E$. For aqueous PEO solutions having a broad molecular weight distribution, the inverse value of a characteristic time is not quantitatively equivalent to the critical shear rate, but the power-law relationship holds between the two quantities. (4) The Cross, Carreau, and Carreau-Yasuda models are all applicable to describe the steady flow behavior of aqueous PEO solutions. Among these models, the Carreau-Yasuda model has the best validity.

  • PDF

Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium (바나듐 함유 수용액의 암모늄바나데이트 침전거동 고찰)

  • Yoon, Ho-Sung;Chae, Sujin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Minseuk
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.42-50
    • /
    • 2019
  • In this study, the precipitation reaction of vanadium and ammonium chloride in aqueous solution was investigated in order to recover vanadium. Ammonium metavanadate having a crystal structure of [$NH_4VO_3$] was precipitated from aqueous solution containing vanadium at pH 9.2 ~ 9.4, and ammonium polyvanadate having a crystal structure of [$(NH_4)_2V_6O_{16}$] was precipitated when the pH of the aqueous solution containing vanadium was adjusted with sulfuric acid. Ammonium polyvanadate [$(NH_4)_2V_6O_{16}$] precipitated at a temperature of $80{\sim}90^{\circ}C$ and pH 2, and at a temperature of $40^{\circ}C$ and pH 6 ~ 8 of aqueous solution. In the acidic region of aqueous solution pH 2, the vanadium content of the aqueous solution should be at least 3,000 mg/L and the precipitation temperature should be maintained at $80^{\circ}C$ or higher in order to obtain a precipitation ratio of 99% or more. When the ammonium vanadate was precipitated in the alkaline region, the vanadium content was more than 10,000 mg/L and the precipitation temperature was maintained at $40^{\circ}C$ to increase the precipitation ratio. Aluminum was not precipitated regardless of the vanadium content and pH of the aqueous solution. However, the iron component reacts with ammonium chloride to precipitate into ammonium jarosite. Therefore, Fe component must be preferentially removed in order to increase the recovery of vanadium.

Anti-oxidative, Acetylcholinesterase Inhibitory Activities and Acute Toxicity Study of Nepeta sibirica L.

  • Gonchig Enkhmaa;Gendaram Odontuya;Erdenetsogt Purevdorj;Munkhbat Nomin;Gansukh Enkhjin;Tserendash Chimgee;Chultemsuren Yeruult
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.74-82
    • /
    • 2023
  • Nepeta sibirica L. or Siberian catmint is a medicinal plant species used in Mongolian traditional medicine for curing human different disorders and veterinary practices. The previous study of the whole plant concentrated on the determination of its essential oil composition and reported that the major ones are sesquiterpenes, including nepetalactone. The aim of this study was to reveal a new biological activity of the above-ground parts of N. sibirica L. and compare the activity of different extracts correlating with the content of biologically active compounds and evaluate their toxicity. For this purpose, anti-oxidative and acetylcholinesterase inhibitory activities of the above-ground parts of N. sibirica L. aqueous and ethanol (EtOH) (40%, 70%) extracts were assayed spectrophotometrically. The aqueous extract showed positive anti-oxidative activity by both tested DPPH and FRAP assays with IC50 134.24 ± 1.42 mg/mL and FRAP value 1385.15 ± 8.12 µmol/L at 200 ㎍/mL, in contrast to 40% and 70% EtOH extracts. The 70% EtOH extract presented the highest acetylcholinesterase inhibitory activity (IC50 77.29 ± 0.38 mg/mL) followed by 40% EtOH extract (176.72 ± 0.35 mg/mL) and aqueous extract (275.41 ± 0.23 mg/mL). Total phenolics were found to be gallic acid equivalent, % 3.74 ± 0.05 (70% EtOH), 3.94 ± 0.04 (40% EtOH), and 3.79 ± 0.16 (aqueous), whereas the total flavonoids as a rutin equivalent, % as 2.01 ± 0.12, 1.44 ± 0.17 and 1.99 ± 0.02, each. The aqueous extract showed the best anti-oxidative and lowest activity against the acetylcholinesterase; however, the 70% EtOH extract showed the opposite effects than that of the aqueous. No mortality incidence was visible at various doses, indicating that the oral median lethal dose of aqueous and 70% EtOH extracts were considered greater than 5000 mg/kg. N. sibirica L. belongs to the non-toxic category of the OECD 423 classification.

Interaction between Poly(L-lysine) and Poly(N-isopropyl acrylamide-co-acrylic acid) in Aqueous Solution

  • Sung, Yong-Kiel;Yoo, Mi-Kyong;Cho, Chong-Su
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2000
  • A series of pH/temperature sensitive polymers were synthesized by copolymerizing N-isopro-pyl acrylamide(NIPAAm) and acrylic acid(AAc) . The influence of polyelectrolyte between poly(allyl amine) (PAA) and poly(L-lysine)(PLL) on the lower critical solution temperature(LCST) of pH/temperature sensitive polymer was compared in the range of pH 2∼12. The LCST of PNIPAAm/water in aqueous poly(NIPAAm-co-AAc) solution was determined by cloud point measurements. A polyelectrolyte complex was prepared by mixing poly(NIPAAm-co-AAc) with poly(allyl amine) (PAA) or poly(L-lysine) (PLL) solutions as anionic and cationic polyelectrolytes, respectively. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The cloud points of PNIPAAm in the aqueous copolymers solutions were stongly affected by pH, the presence of polyelectrolyte solute, AAc content, and charge density. The polyelectrolyte complex was formed at neutral condition. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm in the aqueous copolymer solution was stronger than that of poly(allyl amine)(PAA). Although polymer-polymer complex was formed between poly(NIPAAm-co-AAc) and PLL, the conformational change of PLL did not occur due to steric hinderance of bulky N-isopropyl groups of PNIPAAm.

  • PDF

Hydrolysis of Sarin(GB) in Aqueous NaOH Solution (가성소다 수용액에서 사린(GB)의 가수분해)

  • Lee, Yong-Han;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.172-177
    • /
    • 2007
  • The hydrolysis reaction of sarin(GB), one of the nerve agents was studied in aqueous sodium hydroxide(NaOH) solutions to find the experimental conditions which can convert GB into the less toxic compounds. 10 wt% of GB was added into the aqueous NaOH(2.05 eq) in a small-scale jacket-attached reactor connected to a circulator. The reaction rate constants were measured at three temperatures(50, 70 and $90^{\circ}C$) and the reaction times required to degrade the material to > 99% were calculated at different temperatures. In this study, 10 wt% of GB was degraded to 99.99% in 1.2hr at $90^{\circ}C$ by the aqueous NaOH solution. The major hydrolysate of GB was isopropyl methylphosphonate.

Solution Structure of Water-soluble Mutant of Crambin and Implication for Protein Solubility

  • Kang, Su-Jin;Lim, Jong-Soo;Lee, Bong-Jin;Ahn, Hee-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1640-1644
    • /
    • 2011
  • Water-soluble mutant of intrinsically insoluble protein, crambin, was produced by mutagenesis based on the sequence analysis with homologous proteins. Thr1, Phe13, and Lys33 of crambin were substituted for Lys, Tyr, and Lys, respectively. The resultant mutant was soluble in aqueous buffer as well as in dodecylphosphocholine (DPC) micelle solution. The $^1H-^{15}N$ spectrum of the mutant crambin showed spectral similarity to that of the wild-type protein except for local regions proximal to the sites of mutation. Solution structure of water-soluble mutant crambin was determined in aqueous buffer by NMR spectroscopy. The structure was almost identical to the wild-type structure determined in non-aqueous solvent. Subtle difference in structure was very local and related to the change of the intra- and inter-protein hydrophobic interaction of crambin. The structural details for the enhanced solubility of crambin in aqueous solvent by the mutation were provided and discussed.

Theoretical Studies on Selectivity of Dibenzo-18-Crown-6-Ether for Alkaline Earth Divalent Cations

  • Heo, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2669-2674
    • /
    • 2012
  • Crown ether is one of well-known host molecules and able to selectively sequester metal cation. We employed M06-2X density functional theory with IEFPCM and SMD continuum solvation models to study selectivity of dibenzo-18-crown-6-ether (DB18C6) for alkaline earth dications, $Ba^{2+}$, $Sr^{2+}$, $Ca^{2+}$, and $Mg^{2+}$ in the gas phase and in aqueous solution. $Mg^{2+}$ showed predominantly strong binding affinity in the gas phase because of strong polarization of CO bonds by cation. In aqueous solution, binding free energy differences became smaller among these dications. However, $Mg^{2+}$ had the best binding, being incompatible with experimental observations in aqueous solution. The enthalpies of the dication exchange reaction between DB18C6 and water cluster molecules were computed as another estimation of selectivity in aqueous solution. These results also demonstrated that $Mg^{2+}$ bound to DB18C6 better than $Ba^{2+}$. We speculated that the species determining selectivity in water could be 2:1 complexes of two DB18C6s and one dication.

Characteristic of the Formation and Adhesion of Ice on a Cooling Surface by a Stirring Aqueous Solution

  • Kang, Chae-Dong;Seung, Hyun;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.110-117
    • /
    • 2006
  • Ice adhesion or cohesion leads to the decrease of the performance of ice making system, especially to dynamic type ice thermal storage system (DISS) which mainly forms ice from the flow of an aqueous solution. The ice adhesion is influenced by various parameters associated with operating or geometric condition. In this study, the influence on an adhesion of ice to the characteristic of cooling surface and to composition of an aqueous solution was fundamentally observed by using batch type cooling device,. a beaker. Three patterns of solution in each beaker were cooled with brine. Moreover, the characteristic of cooling surface on each beaker was distinguished to coating materials. Stirring power as a degree of the ice adhesion was measured. The stirring power to cooling heat transfer rate in each beaker was compared. As a result, the lowest stirring power of 8.9 W with non-adhesion of ice, was shown in the case of the aqueous solution of EG(4) + PG(1.5) + 1,6HD(1.5). in PE coating beaker.