• 제목/요약/키워드: Aquatic organism

검색결과 187건 처리시간 0.024초

참전복(Haliotis discus hannai) Myostatin 유전자의 cDNA 동정 및 발현 분석 (Molecular Cloning and Expression Pattern of Abalone (Haliotis discus hannai) Myostatin cDNA)

  • 이상범;김정환;조미진;오미영;박흠기;진형주
    • 한국수산과학회지
    • /
    • 제42권2호
    • /
    • pp.139-145
    • /
    • 2009
  • We cloned and sequenced the open reading frame (ORF) cDNA encoding myostatin from the muscle of abalone (Haliotis discus hannai). The ORF cDNA of the abalone myostatin is 1134 bp and encoded 377 amino acid residues that were 60-96% homologous with the amino acids of other organism myostatins. In addition, the ORF contained a conserved proteolytic cleavage site (RXRR) and nine conserved cysteine residues in the C-terminus. Semi-quantitative RT-PCR revealed the presence of myostatin mRNA in various tissues. The strongest expression was observed in the mantle of female abalone, and the gills and heart of male abalone.

휴안포자(Cyst)를 형성하는 과편모조류에 의한 적조발생 (Coastal Algal Blooms Caused by the Cyst-Forming Dinoflagellates)

  • 김학균;박주석;이삼근
    • 한국수산과학회지
    • /
    • 제23권6호
    • /
    • pp.468-474
    • /
    • 1990
  • 휴안포자를 형성하는 과편모조류중 우리나라 남해동부와 동해남부의 연안수역 특히 진해만에서 1982년 이래 3월부터 9월에 걸쳐 적조를 일으킨 종은 8종이었으며 이들은 6종의 과편모조류와 2종의 녹색편모조류로 구성되었다. 계절별로는 이른 봄철에 Scrippsiella trochoidea와 Heterocapsa triquetra종이, 늦봄에 Heterosigma akashiwo가 그리고 여름철에는 Gyrodinium instriatum과 Pheopolykrikos hartmannii가 적조를 일으켰다. 한편 Cochlodinium sp.와 Alexandrium affine는 늦여름부터 가을철에 적조를 일으켰다. 이중 Heterosigma akashiwo는 매년 같은 곳에서 같은 시기에 발생하는 경향을 뚜렷히 나타냈으며 Cochlodinium sp.에서도 이와 같은 특성을 발견할 수 있었다. 한편 적조발생시의 밀도는 $10^3\~10^5\;cells/ml$ 수준이었으며, 밀도변화는 환경특성 보다는 오히려 세포의 크기에 따라 변화하고 있었다.

  • PDF

Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): a review

  • Oh, Gun-Woo;Ko, Seok-Chun;Lee, Dong Hee;Heo, Soo-Jin;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제20권11호
    • /
    • pp.28.1-28.17
    • /
    • 2017
  • Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous) japonicus (Selenka) is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications

  • Vu, Nguyen Thanh;Cho, Young Sun;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제17권4호
    • /
    • pp.479-486
    • /
    • 2014
  • To evaluate their potential utility as an ornamental organism, novel transgenic marine medaka Oryzias dancena strains with a highly vivid fluorescent phenotype were established through transgenesis of a cyan fluorescent protein gene (cfp) driven by the endogenous fast skeletal myosin light chain 2 gene (mlc2f) promoter. The transgenic marine medaka strains possessed multiple copies of transgene integrants and passed their fluorescent transgenes successfully to subsequent generations. Transgenic expression in skeletal muscles at both the mRNA and phenotypic levels was, overall, dependent upon transgene copy numbers. In the external phenotype, an authentic fluorescent color was dominant in the skeletal muscles of the transgenic fish and clearly visible to the unaided eye. The phenotypic fluorescent color presented differentially in response to different light-irradiation sources; the transgenics displayed a yellow-green color under normal daylight or white room light conditions, a strong green-glowing fluorescence under ultraviolet light, and a cyan-like fluorescence under blue light from a light-emitting diode.

Distribution of Fabrea salina at Salt Pond

  • Kim Hyung Sun;Park Chul Hyun;Hur Sung Bum
    • Fisheries and Aquatic Sciences
    • /
    • 제3권3_4호
    • /
    • pp.222-227
    • /
    • 2000
  • Fabrea salina living at salt pond is an interesting ciliate in the research of photobiology and live food for aquaculture. This study was carried out to understand the natural habitat of F. salina at salt pond, which would be a basic biological knowledge for the indoor mass culture of this ciliate. In this research, the water quality as temperature, salinity, dissolved oxygen, and chlorophyll-a was examined with the population density of the ciliate at salt pond. The highest population density of F. salina occurred at 109 ppt and $31^{\circ}C$with 2,390 inds./L in August, and the distribution of the ciliate was positively correlated with salinity, temperature, and chlorophyll­a. Even though F. salina is a very euryharine ciliate, it did not occur at the salinity below 47 ppt in this study. Its reason is able to be explained with the occurrence of many predators as small fish and food competitors as zooplankton living at low salinity of salt pont. While F. salina occurred with Anemia at the same habitat using the same food source, the optimum salinity for the ciliate was a little higher than that of Anemia, and the optimum temperature for the former was a little lower than that of the later. This should be a reason for that these two species have different ecological nich at the same habitat using the same food source.

  • PDF

다중 주파술의 체적산란강도 차이를 이용한 에코그램 내에서의 종 분리와 잡음 제거 (Species Identification and Noise Cancellation Using Volume Backscattering Strength Difference of Multi-Frequency)

  • 강돈혁;신형철;김수암;이윤호;황두진
    • 한국수산과학회지
    • /
    • 제36권5호
    • /
    • pp.541-548
    • /
    • 2003
  • Species identification in hydroacoustic survey is one of the key requirements to estimate biomass of organism and to understand the structure of zooplankton community. Feasibility of species identification using two frequencies (38 and 120 kHz) was investigated on the basis of mean volume backscattering strength difference (MVBS). Virtual echogram technique was applied to two frequencies data sets that obtained from surveys in the Antarctic Ocean and Yellow Sea. Virtual echogram method using MVBS revealed the possibility of species identification, which species identification relying on visual scrutiny of single frequency acoustic data resulted in significant errors in biomass estimation. Through noise cancellation using MVBS, much of the acoustic noise caused by acoustic instruments could be removed in new virtual echogram, and the biomass estimation and data quality was improved.

갈조류 감태 (Ecklonia cava Kjellman)의 대량양식을 위한 가이식 및 양성 조건 (Nursery and Main Culture Conditions for Mass Cultivation of the Brown Alga, Ecklonia cava Kjellman)

  • 황은경;공용근;하동수;박찬선
    • 한국수산과학회지
    • /
    • 제43권6호
    • /
    • pp.687-692
    • /
    • 2010
  • The mass cultivation of Ecklonia cava Kjellman was studied as a potential biomass source for the extract industry in Korea. Experiments were conducted to investigate the optimal conditions for artificial seed production and mass cultivation of this species. Maximum growth and young thalli development in the nursery culture area occurred at 2 m depth, whereas maximum growth of thalli in the main culture area occurred at 1 m depth. Production of E. cava was between 2.6 and 3.6 kg wet wt. $m^{-1}$ after depth control and removal of fouling organism, etc. The relationship between optimal water depth for culture and underwater irradiance during the E. cava cultivation was calculated as: y = -0.718x + 8.042 ($r^2$=0.976). The growth rates achieved in this trial indicate that E. cava cultures could produce and supply sufficient biomass.

Organism-environment interactions and differential gene expression patterns among open-coastal and estuarine populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic

  • Eriksen, Renee L.;Klein, Anita S.
    • Fisheries and Aquatic Sciences
    • /
    • 제21권8호
    • /
    • pp.28.1-28.12
    • /
    • 2018
  • Intertidal macroalgae are exposed to many abiotic stress factors, and they must regularly react to changes in their environment. We used RNA-seq to describe how Porphyra umbilicalis (Rhodophyta) changes gene expression patterns to interact with different habitats. Tissue samples were taken from a typical habitat along the open-coast of the Northwest Atlantic, as well as from a rare, atypical habitat in an estuarine tidal rapid environment. Differential gene expression analyses suggest that pathogic bacteria and viruses may be a significant factor influencing the transcriptome in the human-impacted estuarine environment, but the atypical habitat does not necessarily induce more stress in Porphyra umbilicalis growing there. We found genes related to nitrogen transport are over-expressed in tissue from the open-coastal site compared to those from the estuarine site, where environmental N levels approach hypertrophic levels. Low N levels impede growth, but high levels are toxic to cells, and we use qPCR to show this species regulates expression of a putative high-affinity $NH_4{^+}$ transporter under low and high N conditions. Differences in expression of this transporter in these habitats appear to be inherited from parent to offspring and have general implications for adaptation to habitat in other species that are capable of asexual reproduction, as well as more specific implications for this species' use in aquaculture.

염분농도에 따른 해양미세조류(Nannochloropsis oculata)의 지질 및 지방산의 변화 (Lipid and Fatty Acid Composition in Nannochloropsis oculata Cultured in Varying Salinities)

  • 정우철;한종철;최병대;강석중
    • 한국수산과학회지
    • /
    • 제46권3호
    • /
    • pp.252-258
    • /
    • 2013
  • The quality and quantity of food organisms in fish seed production are important. The marine microalgae Nannochloropsis oculata are used as initial food organisms in the field. We investigated the effects of salinity (0, 10, 20, 30, 40 and 50 psu) on the lipid and fatty acid composition of N. oculata. Cultivation of N. oculata at varying salinities showed the highest growth rate at 20 psu. Total lipid content ranged from 17.26 to 18.63% at salinities from 0 to 50 psu). The nonpolar lipid content increased markedly at 30 psu and was highest at 15.55%. The polar lipid content was lowest at 30 psu, by 84.45%. It was also found that the omega-3 and EPA contents were inversely proportional to salt concentration. For the polar and nonpolar lipid compositions, there was no significant effect of salinity. Omega-3 polyunsaturated fatty acid content especially the content of EPA in the seawater larvae is the essential fatty acid in this food organism. It is thus advantageous to culture N. oculata at 20 psu.

Di-2-ethylhexyl phthalate의 수서생태계 먹이사슬을 통한 생물축적 및 거동예측 (Fate of Di-2-ethylhexyl Phthalate in Aquatic Food Chain)

  • 김은주
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.264-271
    • /
    • 2004
  • An aquatic food chain was constructed to provide information of bioaccumulation of DEHP as followed: phytoplankton(Scenedesmus subspicatus) ${\rightarrow}$ zooplankton(Daphnia magna) ${\rightarrow}$ fish(Oryzias latipes). After 10 days of exposure to DEHP, the fish and culture water were analyzed for residual concentration of DEHP and BAF(Bioaccumulation Factor) was determined. In addition, BCF(Bioconcentration Factor) was calculated in exposure tank in which fish were only exposed DEHP by culture water. These experiments provide the relative importance between BAF and BCF. In this study, BCF and BAF did not show any significant difference. Another work in this study was model construction and application to investigate the effect of food chain structure to BAF in higher organism (fish). The model constructed in this study considered the biological characteristics of DEHP such as metabolic parameters, as well as the chemical characteristics such as solubility. This model could be used in prediction of bioaccumulation level in dependent of various food chain structures, when the target organisms or chemicals would be changed.