• Title/Summary/Keyword: Aquatic Plants System

Search Result 47, Processing Time 0.024 seconds

A Study on Potential of Aquatic Plants to Remove Indoor Air Pollutants (실내오염물질 정화를 위한 수생식물의 이용가능성에 관한 연구)

  • Park, Soyoung;Kim, Jeoung;Jang, Young-Kee;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.5
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to investigate the effect of aquatic plant as a botanical air purification on the indoor air pollution by formaldehyde. Three aquatic plants such as Eichhornia crassipes, Cyperus alternifolius, Echinodorus cordifolius, were selected for this study and they were placed in the artificially contaminated chamber under laboratory condition. The results showed that all three plants could remove the formaldehyde from the contaminated air system effectively. Reduction in the formaldehyde levels by Eichhornia crassipes, which is the floating plant, might be associated with the factors of plant and water. Reduction in the formaldehyde levels by Cyperus helferi and Echinodorus cordifolius, which were emergent plant, was due to the complex effect of plant, soil medium and water. In aquatic plant system, dissolution, microbial degradation in rhizosphere, uptake through root and shoot, sorption to soil and shoot, hydrolysis are known as the main mechanisms of water soluble pollutants in the given system. The advantages of indoor air quality control system using aquatic plants can be; 1) various purifying mechanisms than foliage plants, 2) effective for decontamination of water soluble pollutants; 3) easy for maintenance; 4) diverse application potential. Therefore it was suggested from the results that indoor air control system of aquatic plants should be more effective for reduction of indoor air pollutants.

A Basic Experiment for a Small Sewage Treatment System Using Aquatic Plants and Microbes (소형 식물·미생물 정화조 시스템 개발을 위한 기초 실험)

  • Lee, Eun-Heui;Rhee, In-Sook;Jung, Dong-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.31-38
    • /
    • 2002
  • The rate of sewage treatment in South Korea was 68% in the late 1999. Sewage treatment is mostly made near big cities such as Seoul and Busan, and it is little in rural areas. Wastewater from households goes to streams directly without treatment in rural areas and pollutes streams. It is necessary to improve the progress for treatment of nutrients such as N and P which cause eutrophication in streams and lakes, because sewage treatment system in South Korea focuses on treatment of basic organic matters. Therefore it will contribute to improve discharged water quality if small sewage treatment systems by aquatic plants and microbes are introduced to rural areas where are not connected to local sewage treatment facility. This experiment was conducted to find out the best way using aquatic plants and microbes to purify wastewater from households through individual sewage treatment system. Phragmites communis, Iris pseudoacorus, Acorus calamus var. angustatus, Typha orientalis and Oenanthe javanica were used for this experiment. BOD, COD, SS, T-N and T-P were analyzed following standard methods for wastewater. The result shows that wastewater was roughly purified through pebbles and sands, and highly purified through aquatic plants and microbes especially in T-N and T-P. Iris pseudoacorus is the most effective in reduction of COD and BOD level. This system will work even in winter when plants die because microbes will be still working.

Aquatic Plant Restoration by Mattress/Filter System in Stagnant Stream Channel (정체수역에서의 Mattress/Filter에 의한 수생식물 복원)

  • Yeo Woon-Ki;Heo Chang-Hwan;Lee Seung-Yun;Jee Hong-Kee
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.21-31
    • /
    • 2006
  • Aquatic plants grow in water with photosynthesis and purify water quality as taking organic and inorganic matter in water. Polluted water in stagnant stream channel where nutritive salts load is great can be purified by activities of aquatic plants. Aquatic plants should be fixed to bed easily to plant and sustainable environment is needed. So in this study, Mattress/Filter system is suggested to plant aquatic plant in stagnant stream channel. In the result of study, coverage of Phragmites australis, Zizania latifolia and Typha angustifolia which planted in mattress was $78\%,\;62\%\;and\;82\%$ and numbers of species in each mattress system were 7, 11, 3. The evenness index of each mattress system was 0.86, 0.91 and 0.79 and diversity index of each mattress system was 1.67. 2.18 and 0.87. Removal rates of phosphorus at Phragmites australis, Zizania latifolia and Typha angustifolia which planted in mattress were $68.7\%,\;62.7\%,\;55.3\%$ and removal rates of nitrogen of them were $79.8\%,\;74.7\%,\;64.9\%$. The removal rate of nitrogen was greater than phosphorus at all system and both removal rates were greater at Phragmites australis than at Zirania latifolia and at Typha angustifolia the rate was the least. Removal rates of $PO_4^{-3},\;NH_4-N,\;NO_{3-}N$ at Phragmites australis were $57.4\%,\;52.8\%,\;47.8\%$ and at Zizania latifolia were $82.6\%,\;77.2\%,\;67.5\%$ and at Typha angustifolia were $80.6\%,\;73.7\%,\;64.3\%$. It seems that removal effect is great by the planted mattress system.

Inorganic Nutrient Removal Efficiency of Aquatic Plants from Recirculating Aquaculture System (수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율)

  • 마진석;오승용;조재윤
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.171-178
    • /
    • 2003
  • Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N $O_3$$^{[-10]}$ -N, and P $O_4$$^{3-}$-P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 $m^2$) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 $m^2$ tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 $m^2$ tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth.

Environmental Effects on the Hydrologic and Ecologic System around the Wasted Ore Dump of the Moak Gold-Silver Mine (모악 금·은광산에 방치된 폐석이 주변 수계 및 생태계에 미치는 환경적 영향)

  • Na, Choon-Ki;Jeon, Seo-Ryeong
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.221-229
    • /
    • 1995
  • The heavy metal contents and their dispersion patterns in stream water, stream sediments, land plants and aquatic larvae collected from the hydrologic system flowing via the wasted ore dump of the Moak Au-Ag mine were investigated systematically in order to evaluate the environmental impacts of the abandoned metal mine. The heavy metal content increases abruptly in the vicinity of the wasted ore dump, then attenuated with increasing distance from the mine area. Attenuating rates were stream water > stream sediments > land plants > aquatic larvae. On the other hand, the cumulative content of heavy metals was stream sediments >aquatic larvae > land plants > stream water. Each element tends to be enriched selectively according to media; Zn > Cu > Cd > Pb in stream water, Zn > Pb > Cu > Cd in stream sediments and land plants, and Zn > Cu > Pb > Cd in aquatic larvae. These results show that the degree of enrichment and dispersion of pollutant extruded from the wasted ore dump are different according to elements and media, and that the circulation system of materials of each medium is different. The heavy metals, especially Cu, Pb and Zn, of polluted downstream sediments occur in high proportions of Fe-Mn oxides and organic bounded forms, which show high potential of a secondary pollution source. The content of heavy metals and their dispersion patterns in stream sediments are different from those of ten years ago; pollution levels of heavy metals were degraded in various ranges. The Zn and Cu-polluted areas were widened whereas Fe and Pb-polluted areas were reduced. In crops collected from the farm lands in downstream area, the pepper was more concentrated in all heavy metal than rice. The pepper showed some contaminated level in Cu(9.7ppm) and Zn(149ppm), and the rice in Zn(90ppm). However, both crops showed no significant level in Cd(<0.2ppm) and Pb(<0.5ppm).

  • PDF

In vitro Regeneration of Phragmites australis through Embryogenic Cultures

  • Lee Jeong-Sun;Kim Chang-Kyun;Kim In-Sung;Lee Eun-Ju;Choi Hong-Keun
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Phragmites australis (reed) has received much attention as being one of the principle emergent aquatic plants for treating industrial and civil wastewater. Plant regeneration via plant tissue culture in p. australis was investigated. Three types of callus were identified from seeds on N6 medium plus 4.5 UM 2,4-dichlorophenoxyacetic acid (2,4-D). Yellow compact type showed the best redifferentiation, whereas white compact type and yellow friable were not competent to differentiate into plane. Solid medium culture was better than liquid suspension culture for enhancing callus growth when N6 medium supplemented with 4.5 ${\mu}M$ 2,4-D was used. Phytagel, as a gelling agent, was superior to agar in plant regeneration on N6 medium, supplemented with 9.4 ${\mu}M$ kinetin and 0.54 ${\mu}M$ $\alpha$-naphthaleneacetic acid (NAA). Transfer of the plantlets regenerated from kinetin and NAA-supplemented N6 medium to growth regulator-free MS medium enhanced the further development of the plantlets. Plantlets on subsequently grown to maturity when tansferred to potting soil. The regenerated plants exhibited morphologically normal. The system for plant regeneration of P. australis enables to propagate elite lines on a large scale for water purification in the ecosystem

A Study on the Problems and Improvement of the Safety Management Law of Nuclear Facilities -Focused on Safety Management of Aquatic Products- (원자력시설 안전관리 법제의 문제점과 개선방안 연구 -수산물의 안전관리를 중심으로-)

  • Lee, Woo-Do
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2019
  • The main purpose of this study is to analyze and examine the problems of the law systems of the safety and maintenance of nuclear facilities and to propose the improvements with respect to the related problems especialy focused on safety management of aquatic products. Therefore, the results of the paper would be helpful to build an effective management law system of safety and maintenance of nuclear facilities and fisheries products. The research methods are longitudinal and horizontal studies. This study compares domestic policies with foreign policies of nuclear plants and aquatic products. Using the above methods, examining the current system of nuclear-related laws and regulations, we have found that there exist 13 Acts including "Nuclear Safety Act", etc. Safety laws related on nuclear facilities have seven Acts including "Nuclear Safety Act", "the Act on Physical Protection and Radiological Emergency", "Radioactive waste control Act", "Act on Protective Action Guidelines against Radiation in the Natural Environment", "Special Act on Assistance to the locations of facilities for disposal low and intermediate level radioactive waste", "Korea Institute of Nuclear Safety Act". "Act on Establishment and Operation of the Nuclear Safety and Security Commission". The seven laws are composed of 119 legislations. They have 112 lower statute of eight Presidential Decrees, six Primeministrial Decrees and Ministrial Decrees, 92 administrative rules (orders), 6 legislations of local self-government aself-governing body. The concluded proposals of this paper are as follows. Firstly, we propose that the relationship between the special law and general law should be re-established. Secondly, the terms with respect to law system of safety and maintenance of nuclear plants should be redefined and specified. Thirdly, it is advisable to re-examine and re-establish the Law System for Safety and Maintenance of Nuclear Facilities. and environmental rights like the French Nuclear Safety Legislation. Lastly, inadequate legislation on the aquatic pollution damage should be re-established. It is necessary to ensure sufficient transparency as well as environmental considerations in the policy decisions of the Korean government and legislation of the National Assembly. It is necessary to further study the possibilities of accepting the implications of the French legal system as a legal system in Korea. In conclusion, the safety management of nuclear facilities is not only focused on the secondary industry and the tertiary industry centering on power generation and supply, but also on the primary industry, which is the food of the people. It is necessary to prevent damage to be foreseen. Therefore, it is judged that there should be no harm to the people caused by contaminated marine products even if the "Food Safety Law for Prevention of Radiation Pollution Damage" is enacted.

Soil Adsorption and Desorption of SKYBIO

  • Chang, Hee-Ra;Kim, Kyun;Kim, Yong-Hwa
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.152-152
    • /
    • 2003
  • The majority of the SKYBIO will be used in the treatment of water in food processing plants, swimming pools and cooling towers, in the manufacture fabric softeners in Australia. Most will eventually be released into domestic sewage system as a consequence of product use. The SKYBIO is not readily biodegradable (0% over 28 days), and is expected to have a low partition coefficient and high water solubility (285 g/L), all indicating that the material would be mobile in both aquatic and terrestrial compartment. The PEC/PNEC ratio for the aquatic environment is 56. This value is significantly greater than 1, indicating an immediate concern to the aquatic compartment. However as a consequence of it's cationic character, the SKYBIO will be expected to associate to negatively charged organic matter in soil and sediment.

  • PDF

TREATMENT OF HIGH-CONCENTRATION SWINE WASTEWATER BY ANAEROBIC DIGESTION AND AN AQUATIC PLANT SYSTEM

  • Kim, B.U.;Kwon, J.H.
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.134-142
    • /
    • 2006
  • The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system was investigated. Anaerobic digestion of swine wastewater gave volatile solids (VS) removal efficiencies of 43.3%, 52.1% and 54.5% for hydraulic retention times (HRTs) of 20, 30, 40 days, respectively. The removal efficiencies of VS, total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) decreased with increasing VS volumetric loading rate (VLR). Higher organic removal efficiency was observed at longer HRTs for the same VS volumetric loading rate. As VS volumetric loading rate increased, biogas production increased and the methane content of the biogas decreased. Experiments using duckweed (Lemna species) as an aquatic macrophyte gave the following results. In the case of nitrogen, removal efficiency was above 60% and effluent concentration was below 10.0 mg/L when the influent ammonia-N loading was about $1.0\;g/m^2/day$. In the case of phosphorus, removal efficiency was above 55% and effluent concentration was below 2.0 mg/L when the influent $PO_4$-P loading was about $0.15\;g/m^2/day$. In addition, crude protein and phosphorus content of duckweed biomass increased from 15.6% to 41.6% and from 0.8% to 1.6%, respectively, as the influent nutrient concentration increased. The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system offers good performance in terms of organics and nutrient removal for relatively low operation and maintenance costs. The results indicate that under appropriate operational conditions, the effluent quality is within the limits set by Korean discharge criteria.

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF