• Title/Summary/Keyword: Aquaculture Information

Search Result 205, Processing Time 0.036 seconds

The Development and Characteristics Analysis of High Precision Monitoring Sensor for the Marine Installation (해양설비용 정밀 모니터링 센서의 개발 및 특성 분석)

  • Cho, Jeong-Hwan;Ko, Sung-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.101-106
    • /
    • 2013
  • This paper proposes the new high precision monitoring sensor for the Marine Installation. Among variety of sensor network systems, wireless information transmission through the marine is one of the enabling technologies for the development of future marine-observation systems and sensor networks. Applications of marine monitoring range from oil industry to aquaculture, and include instrument monitoring, pollution control, climate recording, prediction of natural disturbances. For these marine applications to be available, however, the provision of precise location information using monitoring sensor is essential. In this paper, the dynamic characteristics for obtaining the location information of monitoring sensor is analyzed. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably excellent performance for the Monitoring for the Marine Installation.

An Implementation of DAQ and Monitoring System for a Smart Fish Farm Using Circulation Filtration System

  • Jeon, Joo Hyeon;Lee, Na Eun;Lee, Yoon Ho;Jang, Jea Moon;Joo, Moon Gab;Yoo, Byung Hwa;Yu, Jae Do
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1179-1190
    • /
    • 2021
  • A data acquisition and monitoring system was developed for an automated system of a smart fish farm. The fish farm is located in Jang Hang, South Korea, and was designed as circulation filtration system. Information of every aquaculture pool was automatically measured by pH sensors, dissolved oxygen sensors, and water temperature sensors and the data were stored in the database in a remoted server. Modbus protocol was used for gathering the data which were further used to optimize the pool water quality to predict the rate of growth and death of fish, and to deliver food automatically as planned by the fish farmer. By using JSON protocol, the collected data was delivered to the user's PC and mobile phone for analysis and easy monitoring. The developed monitoring system allowed the fish farmers to improve fish productivity and maximize profits.

Isolation and Physiological Characterization of a Novel Algicidal Virus Infecting the Marine Diatom Skeletonema costatum

  • Kim, JinJoo;Kim, Chang-Hoon;Youn, Seok-Hyun;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.186-191
    • /
    • 2015
  • Diatoms are a major component of the biological community, serving as the principal primary producers in the food web and sustaining oxygen levels in aquatic environments. Among marine planktonic diatoms, the cosmopolitan Skeletonema costatum is one of the most abundant and widespread species in the world's oceans. Here, we report the basic characteristics of a new diatom-infecting S. costatum virus (ScosV) isolated from Jaran Bay, Korea, in June 2008. ScosV is a polyhedral virus (45-50 nm in diameter) that propagates in the cytoplasm of host cells and causes lysis of S. costatum cultures. The infectivity of ScosV was determined to be strain- rather than species-specific, similar to other algal viruses. The burst size and latent period were roughly estimated at 90-250 infectious units/cell and <48 h, respectively.

Monitoring system for prevention of red tide damage in marine aquaculture farm (해양양식장 적조피해 예방 모니터링 시스템 설계)

  • Jeong, Hee-Ja;Jang, Il-Tae;Kim, Nam-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.1020-1022
    • /
    • 2018
  • 본 연구에서는 여름철이면 찾아오는 우리나라 연근해 양식장의 이상기후 현상인 이상고온과 적조현상으로 인한 피해를 예방하고자 사전 탐색을 위한 모니터링 기술을 제안한다. 이에 필요한 환경정보 수집요소로는 수온, 산소포화도, 조도에 관한 정보수집이 있으며, 이를 위한 센서모듈을 설계하고, 측정된 센서 정보를 수집 전송하기 위한 데이터 통신과 수집된 정보의 저장 및 분석을 위한 서버측의 데이터관리 기술이 필요하다. 이러한 일련의 과정 절차를 통한 해양 이상조류 모니터링 시스템을 제안하였으며, 사업화 가능성을 타진하였다.

Implementing an AutoFarm System using IoT Technology (IoT 기술을 활용한 오토팜 시스템 구현)

  • Cha, Eun-Young;Kim, So-Min;Sim, Su-Min;Lee, Gyeong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1320-1323
    • /
    • 2021
  • 최근 미래형 농업으로 주목받고 있는 '아쿠아포닉스(Aquaponics)'는 물고기 양어 기술(Aquaculture)과 수경 농법(Hydroponic)을 융합한 친환경적인 순환형 생산 시스템이다. 하지만 양식 환경과 수경재배환경이 서로 성장하는 데에 영향을 주기 때문에 농업인이나 일반인이 사용하기에 난도가 높고, 초기 투자비가 많이 든다는 점에서 국내 도입에 대한 문제점이 제기되고 있다.[1] 본 논문에서는 IoT 기술을 이용해 아쿠아포닉스의 단점을 보완할 기술적 대안과 국내 도입 문제 해결방안으로서 오토팜(AutoFarm) 시스템을 제안한다.

Effects of Body Weight and Dietary Protein Level on Ammonia Excretion by the Nile tilapia Oreochromis niloticus (나일틸라피아의 암모니아 배설에 미치는 어체중과 사료 내 단백질 함량의 영향)

  • Oh, Sung-Yong;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • Ammonia is the major limiting factor in intensive aquaculture production systems. Therefore, quantification of ammonia excretion is important for the water quality management in aquaculture systems. Ammonia excretion is known to be affected by many factors such as body weight and dietary protein level (DPL). In this study, experiments were carried out to investigate the effects of body weight and DPLs on the rates of ammonia excretion of Nile tilapia Oreochromis niloticus. Three sizes of fishes (mean initial weight; 4.8 g,42.7 g and 176.8 g) were fed each of two dietary protein levels (30.5% and 35.5%). Daily feeding levels for the three fish sizes of 4.8 g, 42.7 g and 176.8 g were 6%, 3%, and 1.5% body weight per day, respectively. Each group of fish was stocked in a 17.1-L aquarium and all treatments were triplicated. Following feeding, the weight-specific ammonia excretion rate of O. niloticus increased, peaked at 4 to 8 h, and returned to pre-feeding levels within 24 h. Total ammonia nitrogen (TAN) excretion.ate per unit weight decreased with the increase of fish weight for each diet (P<0.05). The TAN excretion rate increased with increasing dietary protein content for each fish size (P<0.05). TAN excretion rates (Y) for each diet with different fish weights were described by the following equations: low DPL diet (30.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=955.69-147.12\;lnX\;(r^2=0.95)$, high DPL diet (35.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=1362.41-209.79\;lnX\;(r^2=0.99)$. Where: X=body weight (g wet wt.). The TAN excretion rates ranged 28.5%-37.1% of the total nitrogen ingested for the low DPL diet (30.5%) and 37.4-38.5% for the high DPL diet (35.5%). Total nitrogen losses of fish fed the high DPL diet $(35.5%;\;0.26\sim0.91g\;kg^{-1}\;d^{-1})$ were higher than those fed the low DPL diet $(30.5%;\;0.22\sim0.68g\;kg^{-1}\;d^{-1})$. The losses decreased per kg of fish as fish size increased. Results will provide valuable information fer water quality management and culture of Nile tilapia in recirculating aquaculture systems.

Environmental Factors Affecting on Shrimp Cultivation and Bacterial Examination in Shrimp Aquaculture

  • Chun, Jae-Woo;Ma, Chae-Woo;Oh, Kye-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.775-779
    • /
    • 2003
  • Cultivation environment for effective production of shrimp in shrimp aquaculture, Institute of Marine & Fishery, Soonchunhyang University located at Tae-An, Chung-Nam Province, with the ultimate aim of probiotics development, was monitored. Several environmental factors including dissolved oxygen, water body temperature, pH, salinity, $NH_4-N$, $NO_2-N$, $NO_3-N$, chlorophyll a affecting on the growth of shrimp were examined. Concentrations of $NH_4-N$, $NO_2-N$, and $NO_3-N$ dissolved in water samples were determined to 0.024-0.034 mg/L, 0.03-0.02, and 0.004-0.009 mg/L, respectively. Chlorophyll a content was examined in the range of 0.002-0.118 $ug/m^3$. In order to understand the distribution of different bacteria in water samples collected in shrimp aquaculture, bacteria were isolated and enumerated on the marine agar plates. Total number of bacteria were increased to approximately $6.5\;{\times}\;10^4$. Thirteen predomonant bacteria were isolated and identified. As the results of BIOLOG test of the isolates, these bacteria were identified as Corynebacterium nirilophilus, Clavibacter agropyri, Sphingomonas adhaesiva, Brevundimonas vesicularis, Vibrio parahaemolyticus, Pseudomonas bathycetes, Vibrio tubiashii, Sphingomonas macrogoltabidus, Rhodococcus, rhodochrous, Burkholderia glumae, Corynebacterium urealyticus, Rhodococcus fascians, Psychrobacter immobilis, respectively. Further work will stimulate the elucidation of pathogenicity, corresponding bacteria related to environment and probiotics, providing good information for effective production of shrimp.

  • PDF

Spawning Induction and Egg Development of Surf Clam, Spisula sachalinensis (북방대합, Spisula sachalinensis의 산란유발 및 난발생)

  • Lee, Jeong-Yong;Chang, Young-Jin;Park, Young-Je
    • Journal of Aquaculture
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 1996
  • In order to obtain the basic information for seedling production of surf clam, Spisula sachalinensis, spawning induction and egg development were investigated. $NH_4OH$ addition and serotonin injection could induce the spawning in surf clam. Water temperature rising, sperm suspension immersion, UV-ray irradiated seawater and $H_2O_2$ addition less affected on induction of spawning than $NH_4OH$ and serotonin did. On the other hand, males were more sensitive to the treatments than females. The response time to initial spawning in the case of $NH_4OH$ addition was $3\~4$ hours. However in the case of serotonin injection, it was within 5 minutes. The number of eggs released by $NH_4OH$ addition were significantly more than those released by serotonin injection. The serotonin injection induced higher rates of germinal vesicle breakdown than the $NH_4OH$ addition. Fertilizing and hatching rates of the eggs also were the similar results. Eggs of surf clam were demersal isolated eggs and averaging $65.2{\pm}±1.8\;{\mu}m$ in diameter after spawning. Optimum range of water temperature for the development of egg was $15\~20^{\circ}C$, The required time for development of D-shaped larvae was 42 hours at $15^{\circ}C$ and 27 hours at $20^{\circ}C$, respectively.

  • PDF

Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

  • Cu, T.T.T.;Nguyen, T.X.;Triolo, J.M.;Pedersen, L.;Le, V.D.;Le, P.D.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.280-289
    • /
    • 2015
  • Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane ($CH_4$) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest $CH_4$ yield of 443 normal litter (NL) $CH_4kg^{-1}$ volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL $CH_4kg^{-1}$ VS, respectively. The BMP experiment also demonstrated that the $CH_4$ production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95.This model was applied to calculate the $CH_4$ yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

Directions to Fisheries Education for Achieving UN Sustainable Development Goals (SDGs) (유엔 지속가능발전 목표(SDG)를 위한 수산교육 방향)

  • KANG, Beodeul;ZHANG, Chang Ik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.453-465
    • /
    • 2017
  • UN adopted the 2030 Agenda for Sustainable Development and the Sustainable Development Goals (SDGs) in 2015, a set of 17 objectives with 169 targets expected to guide actions over the next 15 years (2016-2030). One goal expressly focuses on the oceans, that is, SDG 14 'Conserve and sustainably use the oceans, seas and marine resources for sustainable development'. More than 30% of fish stocks worldwide were classified by FAO(2016) as overfished. Globally, world capture fisheries are near the ocean's productive capacity with catches on the order of 80 million metric tons. Aquaculture production is increasing rapidly and is expected to continue to increase, but aquaculture encounters some environmental challenges, including potential pollution, competition with wild fishery resources, potential contamination of gene pools, disease problems, and loss of habitat. Accordingly, there have been a variety of world organization and conferences stressing the importance of the implementation of the ecosystem-based fisheries management(EBFM) to overcome these problems. Annual catch of Korean fisheries have shown continuously declining patterns since late 1990s. Most fish stocks are currently known to be over-exploited, and some stocks are depleted due to the increase in fishing intensity and over-capitalization of fishing fleets. Other reasons for the depletion are land reclamations and coastal pollution, which destroy spawning and nursery grounds along the coastal regions. Aquaculture production is also increasing rapidly in Korea. However, several important issues such as gene pool and interaction with capture fisheries should be considered. The EBFM approach should use the best available information coupled with a reasonable application of the precautionary approach. The EBFM has global relevance, and so the real challenge will be to develop and use reliable, robust and cost-effective means of assessing and monitoring the status of ecosystems and their resources, and rapid means of detecting any undesirable and excessive impacts that threaten sustainable use. Future fisheries education should take into account UN's SDGs, which were adopted to achieve the global 2030 agenda. However, there are some difficulties in the current fisheries education system in Korea. First, the current education organizations are limited within the old frame of traditional fisheries sciences. Second, the fisheries education is currently lack of the future-oriented education system and of customized schools or departments. Third, the on-going fisheries education has been based upon few educational policies which are sufficiently relevant to holistic SDGs of the global standard. Accordingly, directions to modern fisheries education for achieving SDGs would be, first, the transition of fisheries education structure into the future-oriented and customized education system. Second, fisheries education needs to shift to the new paradigm, which combines traditional fisheries science education with related fields such as oceanography and environmental sciences to adopt the concept of EBFM. Lastly, fisheries education should accompany relevant policies for effectively achieving SDGs.