Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
International Journal of Control, Automation, and Systems
/
v.2
no.4
/
pp.423-434
/
2004
In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.
The Transactions of The Korean Institute of Electrical Engineers
/
v.58
no.2
/
pp.399-406
/
2009
In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.38
no.6
/
pp.26-37
/
2001
In order to improve the several problems of the general backpropagation, we propose a method using a fuzzy logic system for automatic tuning of the activation function gain in the backpropagation. First, we researched that the changing of the gain of sigmoid function is equivalent to changing the learning rate, the weights, and the biases. The inputs of the fuzzy logic system were the sensitivity of error respect to the last layer and the mean sensitivity of error respect to the hidden layer, and the output was the gain of the sigmoid function. In order to verify the effectiveness of the proposed method, we performed simulations on the parity problem, function approximation, and pattern recognition. The results show that the proposed method has considerably improved the performance compared to the general backpropagation.
This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Q-learning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents Communicate With Others Sharing training episodes and learned policies, while keeping the overall scheme of conventional Q-learning. Experimental results on KOSPI 200 show that a trading system based on the proposed framework outperforms the market average and makes appreciable profits. Furthermore, in view of risk management, the system is superior to a system trained by supervised learning.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.3
/
pp.401-406
/
2011
In order to solve a complex optimization problem more efficiently than traditional approaches, various meta-heuristic algorithms such as genetic algorithm, ant-colony algorithm, and harmony search algorithm have been extensively researched. Compared with other meta-heuristic algorithm, harmony search algorithm shows a better result to resolve the complex optimization issues. Harmony search algorithm is inspired by the improvision process of musician for most suitable harmony. In general, the performance of harmony search algorithm is determined by the value of harmony memory considering rate, and pitch adjust rate. In this paper, modified harmony search algorithm is proposed in order to derive best harmony. If the optimal solution of a specific problem can not be found for a certain period of time, a part of original harmony memory is updated as the selected suitable harmonies. Experimental results using test function demonstrate that the updated harmony memory can induce the approximation of reliable optimal solution in the short iteration, because of a few change of fitness.
In this study, a source locating technique applicable to transversely isotropic media was developed. Wave velocity anisotropy was considered based on the partition approximation method, which simply enabled AE source locating. Sets of P wave arrival time were decided by the two-step AIC algorithm and they were later used to locate the AE sources when having the least error compared with the partitioned elements. In order to validate the technique, pencil lead break test on artificial transversely isotropic mortar specimen was carried out. Defining the absolute error as the distance between the pencil lead break point and the located point, 1.60 mm ~ 14.46 mm of range and 8.57 mm of average were estimated therefore it was regarded as thought to be 'acceptable' considering the size of the specimen and the AE sensors. Comparing each absolute error under different threshold levels, results showed small discrepancies therefore this technique was hardly affected by background noise. Absolute error could be decomposed into each coordinate axis error and through it, effect of AE sensor position could be understood so if optimum sensor position was able to be decided, one could get more precise outcome.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.5
/
pp.637-644
/
2011
Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.
You Jin-Sang;Song Yoonho;Seo1 Soon-Jee;Song Young-Soo
Geophysics and Geophysical Exploration
/
v.4
no.2
/
pp.25-33
/
2001
Loop-loop electromagnetic (EM) survey in frequency domain has been carried out in order to provide basic solution to geotechnical applications. Source and receiver configuration may be horizontal co-planar (HCP) and/or vertical co-planar (VCP). Three quadrature components of mutual impedance ratio for each configuration are used to construct the subsurface image. For the purpose of obtaining the model response and validating the reasonable performance of the inversion, we obtained each responses of two-layered and three-layered earth models and two-dimensional (2-D) isolated anomalous body. The response of 2-D isolated anomalous body has been calculated using extended Born approximation for the solution of 2.5-D integral equation describing EM scattering problem. As a result of the least-squares inversion with variable Lagrangian multiplier, we could construct more resolvable image from HCP data than VCP data. Furthermore, joint inversion of HCP and VCP data made better stability and resolution of the inversion. Resistivity values, however, did not exactly match the true ones. Loop-loop EM field data was obtained with EM34-3XL system manufactured by Geonics Ltd. (Canada). Electrical resistivity survey was conducted on the same line for the comparison in advance. Since the constructed image from loop-loop EM data by 2-D inversion algorithm showed almost similar resistivity distribution to that from electrical resistivity one, we expect the developed 2.5-D loop-loop EM inversion program can be applied for the reconnaissance site survey.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.1
/
pp.17-27
/
2014
As the importance of Cooperative Engagement Capability and network-centric warfare has been dramatically increasing, it is necessary to develop distributed tracking systems. Under the development of distributed tracking systems, it requires tracking filters and data fusion theory for nonlinear systems. Therefore, in this paper, the problem of nonlinear track fusion, which is suitable for distributed networks, is formulated, four algorithms to solve the problem of nonlinear track fusion are introduced, and performance of introduced algorithms are analyzed. It is a main problem of nonlinear track fusion that cross-covarinaces among multiple platforms are unknown. Thus, in order to solve the problem, two techniques are introduced; a simplification technique and a approximation technique. The simplification technique that help to ignore cross-covariances includes two algorithms, i.e. the sample mean algorithm and the Millman formula algorithm, and the approximation technique to obtain approximated cross-covariances utilizes two approaches, by using analytical linearization and statistical linearization based on the sigma point approach. In simulations, BCS fusion is the most efficient scheme because it reduces RMSE by approximating cross-covariances with low complexity.
It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.