• Title/Summary/Keyword: Approximation Order

Search Result 1,078, Processing Time 0.026 seconds

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

The Performance Improvement of Backpropagation Algorithm using the Gain Variable of Activation Function (활성화 함수의 이득 가변화를 이용한 역전파 알고리즘의 성능개선)

  • Chung, Sung-Boo;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.26-37
    • /
    • 2001
  • In order to improve the several problems of the general backpropagation, we propose a method using a fuzzy logic system for automatic tuning of the activation function gain in the backpropagation. First, we researched that the changing of the gain of sigmoid function is equivalent to changing the learning rate, the weights, and the biases. The inputs of the fuzzy logic system were the sensitivity of error respect to the last layer and the mean sensitivity of error respect to the hidden layer, and the output was the gain of the sigmoid function. In order to verify the effectiveness of the proposed method, we performed simulations on the parity problem, function approximation, and pattern recognition. The results show that the proposed method has considerably improved the performance compared to the general backpropagation.

  • PDF

Optimization of Stock Trading System based on Multi-Agent Q-Learning Framework (다중 에이전트 Q-학습 구조에 기반한 주식 매매 시스템의 최적화)

  • Kim, Yu-Seop;Lee, Jae-Won;Lee, Jong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Q-learning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents Communicate With Others Sharing training episodes and learned policies, while keeping the overall scheme of conventional Q-learning. Experimental results on KOSPI 200 show that a trading system based on the proposed framework outperforms the market average and makes appreciable profits. Furthermore, in view of risk management, the system is superior to a system trained by supervised learning.

Study on Improvement of Convergence in Harmony Search Algorithms (Harmony Search 알고리즘의 수렴성 개선에 관한 연구)

  • Lee, Sang-Kyung;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.401-406
    • /
    • 2011
  • In order to solve a complex optimization problem more efficiently than traditional approaches, various meta-heuristic algorithms such as genetic algorithm, ant-colony algorithm, and harmony search algorithm have been extensively researched. Compared with other meta-heuristic algorithm, harmony search algorithm shows a better result to resolve the complex optimization issues. Harmony search algorithm is inspired by the improvision process of musician for most suitable harmony. In general, the performance of harmony search algorithm is determined by the value of harmony memory considering rate, and pitch adjust rate. In this paper, modified harmony search algorithm is proposed in order to derive best harmony. If the optimal solution of a specific problem can not be found for a certain period of time, a part of original harmony memory is updated as the selected suitable harmonies. Experimental results using test function demonstrate that the updated harmony memory can induce the approximation of reliable optimal solution in the short iteration, because of a few change of fitness.

Experimental Study on Source Locating Technique for Transversely Isotropic Media (횡등방성 매질의 음원추적기법에 대한 실험적 연구)

  • Choi, Seung-Beum;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.56-67
    • /
    • 2015
  • In this study, a source locating technique applicable to transversely isotropic media was developed. Wave velocity anisotropy was considered based on the partition approximation method, which simply enabled AE source locating. Sets of P wave arrival time were decided by the two-step AIC algorithm and they were later used to locate the AE sources when having the least error compared with the partitioned elements. In order to validate the technique, pencil lead break test on artificial transversely isotropic mortar specimen was carried out. Defining the absolute error as the distance between the pencil lead break point and the located point, 1.60 mm ~ 14.46 mm of range and 8.57 mm of average were estimated therefore it was regarded as thought to be 'acceptable' considering the size of the specimen and the AE sensors. Comparing each absolute error under different threshold levels, results showed small discrepancies therefore this technique was hardly affected by background noise. Absolute error could be decomposed into each coordinate axis error and through it, effect of AE sensor position could be understood so if optimum sensor position was able to be decided, one could get more precise outcome.

The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval (퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색)

  • Lim, Jee-Hye;Lee, Joon-Whoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.637-644
    • /
    • 2011
  • Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.

An Application of loop-loop EM Method for Geotechnical Survey (지반조사를 위한 loop-loop 전자탐사 기법의 적용)

  • You Jin-Sang;Song Yoonho;Seo1 Soon-Jee;Song Young-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.25-33
    • /
    • 2001
  • Loop-loop electromagnetic (EM) survey in frequency domain has been carried out in order to provide basic solution to geotechnical applications. Source and receiver configuration may be horizontal co-planar (HCP) and/or vertical co-planar (VCP). Three quadrature components of mutual impedance ratio for each configuration are used to construct the subsurface image. For the purpose of obtaining the model response and validating the reasonable performance of the inversion, we obtained each responses of two-layered and three-layered earth models and two-dimensional (2-D) isolated anomalous body. The response of 2-D isolated anomalous body has been calculated using extended Born approximation for the solution of 2.5-D integral equation describing EM scattering problem. As a result of the least-squares inversion with variable Lagrangian multiplier, we could construct more resolvable image from HCP data than VCP data. Furthermore, joint inversion of HCP and VCP data made better stability and resolution of the inversion. Resistivity values, however, did not exactly match the true ones. Loop-loop EM field data was obtained with EM34-3XL system manufactured by Geonics Ltd. (Canada). Electrical resistivity survey was conducted on the same line for the comparison in advance. Since the constructed image from loop-loop EM data by 2-D inversion algorithm showed almost similar resistivity distribution to that from electrical resistivity one, we expect the developed 2.5-D loop-loop EM inversion program can be applied for the reconnaissance site survey.

  • PDF

Structure of Data Fusion and Nonlinear Statistical Track Data Fusion in Cooperative Engagement Capability (협동교전능력을 위한 자료융합 구조와 비선형 통계적 트랙 융합 기법)

  • Jung, Hyoyoung;Byun, Jaeuk;Lee, Saewoom;Kim, Gi-Sung;Kim, Kiseon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.17-27
    • /
    • 2014
  • As the importance of Cooperative Engagement Capability and network-centric warfare has been dramatically increasing, it is necessary to develop distributed tracking systems. Under the development of distributed tracking systems, it requires tracking filters and data fusion theory for nonlinear systems. Therefore, in this paper, the problem of nonlinear track fusion, which is suitable for distributed networks, is formulated, four algorithms to solve the problem of nonlinear track fusion are introduced, and performance of introduced algorithms are analyzed. It is a main problem of nonlinear track fusion that cross-covarinaces among multiple platforms are unknown. Thus, in order to solve the problem, two techniques are introduced; a simplification technique and a approximation technique. The simplification technique that help to ignore cross-covariances includes two algorithms, i.e. the sample mean algorithm and the Millman formula algorithm, and the approximation technique to obtain approximated cross-covariances utilizes two approaches, by using analytical linearization and statistical linearization based on the sigma point approach. In simulations, BCS fusion is the most efficient scheme because it reduces RMSE by approximating cross-covariances with low complexity.

Density Functional Study on Correlation between Magnetism and Crystal Structure of Fe-Al Transition Metal Compounds (Fe-Al 전이금속 화합물의 자성과 결정구조의 상관관계에 대한 밀도범함수연구)

  • Yun, Won-Seok;Kim, In-Gee
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.43-47
    • /
    • 2011
  • It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.