• 제목/요약/키워드: Approximate string matching

검색결과 15건 처리시간 0.017초

k개의 오차를 허용하는 순위 패턴 매칭 (Order preserving matching with k mismatches)

  • 이인복
    • 스마트미디어저널
    • /
    • 제9권2호
    • /
    • pp.33-38
    • /
    • 2020
  • 순위 패턴 매칭 문제는 패턴과 텍스트가 주어졌을 때, 텍스트의 부분 문자열 중 패턴과 순위 동형을 만족하는 것들을 찾는 문제이다. 이 논문에서는 순위 패턴 매칭에 k개의 오차를 허용하는 문제를 푸는 알고리즘을 제안한다. 제안하는 알고리즘은 기존의 알고리즘에 비하여 간단하고 구현이 쉬우며, 평균적인 경우 선형 시간 복잡도를 가진다. 또한 실험을 통해서, 제안된 알고리즘이 현실적인 데이터에 대해서 효율적으로 동작함을 보인다.

4-러시안 알고리즘 기반의 편집거리 병렬계산 (Parallel Computation For The Edit Distance Based On The Four-Russians' Algorithm)

  • 김영호;정주희;강대웅;심정섭
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제2권2호
    • /
    • pp.67-74
    • /
    • 2013
  • 근사문자열매칭 문제는 다양한 분야에서 연구되어 왔다. 최근에는 차세대염기서열분석의 비용과 시간을 줄이기 위해 빠른 근사문자열매칭 알고리즘들이 이용되고 있다. 근사문자열매칭은 문자열들의 오차를 측정하기 위해 편집거리와 같은 거리함수를 이용한다. 알파벳 ${\Sigma}$에 대한 길이가 각각 m, n인 두 문자열 X와 Y의 편집거리는 X를 Y로 변환하기 위해 필요한 최소 편집연산의 수로 정의된다. 두 문자열의 편집거리는 잘 알려진 동적프로그래밍을 이용하여 O(mn) 시간과 공간에 계산할 수 있으며, 4-러시안 알고리즘을 이용해서도 계산할 수 있다. 4-러시안 알고리즘은 블록 크기를 t라 할 때, 전처리 단계에서 $O((3{\mid}{\Sigma}{\mid})^{2t}t^2)$ 시간과 $O((3{\mid}{\Sigma}{\mid})^{2t}t)$ 공간이 필요하며, 계산 단계에서 O(mn/t) 시간과 O(mn) 공간을 이용하여 편집거리를 계산하는 알고리즘이다. 본 논문에서는 4-러시안 알고리즘의 계산 단계를 병렬화하고 실험을 통해 CPU 기반의 순차적 알고리즘과 CUDA로 구현한 GPU 기반의 병렬 알고리즘의 수행시간을 비교한다. 본 논문에서 제시하는 4-러시안 알고리즘의 계산단계는 m/t개의 쓰레드를 사용하여 O(m+n) 시간에 편집거리를 계산한다. GPU 기반의 알고리즘이 CPU 기반의 알고리즘 보다 t = 1일 때 약 10배 빠르고, t = 2일 때 약 3배 빠른 결과를 보였다.

Fast, Flexible Text Search Using Genomic Short-Read Mapping Model

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.518-528
    • /
    • 2016
  • The searching of an extensive document database for documents that are locally similar to a given query document, and the subsequent detection of similar regions between such documents, is considered as an essential task in the fields of information retrieval and data management. In this paper, we present a framework for such a task. The proposed framework employs the method of short-read mapping, which is used in bioinformatics to reveal similarities between genomic sequences. In this paper, documents are considered biological objects; consequently, edit operations between locally similar documents are viewed as an evolutionary process. Accordingly, we are able to apply the method of evolution tracing in the detection of similar regions between documents. In addition, we propose heuristic methods to address issues associated with the different stages of the proposed framework, for example, a frequency-based fragment ordering method and a locality-aware interval aggregation method. Extensive experiments covering various scenarios related to the search of an extensive document database for documents that are locally similar to a given query document are considered, and the results indicate that the proposed framework outperforms existing methods.

GPU의 공유메모리를 활용한 확장편집거리 병렬계산 (Parallel Computation for Extended Edit Distances Using the Shared Memory on GPU)

  • 김영호;나중채;심정섭
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권7호
    • /
    • pp.213-218
    • /
    • 2015
  • 알파벳 ${\Sigma}$로 구성된 길이가 각각 m, n인 두 문자열 X, Y가 주어졌을 때, X, Y의 확장편집거리는 동적프로그래밍을 이용하여 O(mn) 시간과 공간을 계산할 수 있다. 최근 m개의 쓰레드를 이용하여 O(m+n) 시간과 O(mn) 공간을 사용하여 X, Y의 확장편집거리를 계산하는 병렬알고리즘이 제시되었다. 본 논문에서는 GPU의 공유메모리를 활용하여 수행시간을 개선한 병렬알고리즘을 제시한다. 실험 결과, 개선된 병렬알고리즘이 기존의 병렬알고리즘보다 약 19~25배 이상 빠른 수행시간을 보였다.

구조 및 의미 정보를 활용한 파스 트리 커널 기반의 온톨로지 정렬 방법 (Ontology Alignment based on Parse Tree Kernel usig Structural and Semantic Information)

  • 손정우;박성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.329-334
    • /
    • 2009
  • 기존 온톨로지 정렬 기법은 두가지 문제점을 가지고 있다. 먼저 자질을 해당 분야 전문가가 정의하기 때문에 중요한 자질들이 자질셋에 포함되지 않을 수 있다는 것이다. 다음으로는 온톨로지의 의미 정보와 구조 정보를 이용하여 유사도를 따로 계산한 후, 각각의 실험에 의해 정의된 가중치를 이용하여 전체 유사도를 계산한다. 하지만 온톨로지 상에 나타나는 의미 정보와 구조정보의 상대적인 가중치가 실험적인 방법 혹은 사용자에 의해 결정되기 때문에 시스템이 특정 온톨로지에 한정되거나 성능이 떨어질 수 있어 문제이다. 본 논문에서는 온톨로지 정렬을 위한 파스 트리 커널을 제안한다. 온톨로지 상의 개체에 대한 유사도를 계산하기 위해 먼저 온톨로지를 트리 구조로 변환한다 그 후, 변환된 트리 간의 유사도는 온톨로지 정렬을 위해 수정된 파스트리 커널을 이용하여 계산한다. 이때 자질은 명시적으로 나열하지 않는다. 유사도 계산시, 파스 트리 커널에 근사 스트링 매칭 기법을 적용하여 의미 정보를 반영한다. 검증 위한 실험에서 제안한 방법은 기존의 온톨로지 정렬 기법보다 나은 성능을 보였다.