• Title/Summary/Keyword: Approximate function

Search Result 655, Processing Time 0.023 seconds

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Improved Speed of Convergence in Self-Organizing Map using Dynamic Approximate Curve (동적 근사곡선을 이용한 자기조직화 지도의 수렴속도 개선)

  • Kil, Min-Wook;Kim, Gui-Joung;Lee, Geuk
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.416-423
    • /
    • 2000
  • The existing self-organizing feature map of Kohonen has weakpoint that need too much input patterns in order to converse into the learning rate and equilibrium state when it trains. Making up for the current weak point, B.Bavarian suggested the method of that distributed the learning rate such as Gaussian function. However, this method has also a disadvantage which can not achieve the right self-organizing. In this paper, we proposed the method of improving the convergence speed and the convergence rate of self-organizing feature map converting the Gaussian function into dynamic approximate curve used in when trains the self-organizing feature map.

  • PDF

Design Optimization of a Paper Feeding Mechanism using Numerical Analysis Program (수치해석 프로그램을 이용한 미디어 이송 장치의 기구학적 최적설계)

  • Lee S.G.;Choi J.H.;Bae D.S.;Cho H.J.;Song I.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.107-108
    • /
    • 2006
  • This paper shows the design optimization of the paper feeding mechanism under dynamic behavior by using commercial codes of RecurDyn/MTT2D and RecurDyn/AutoDesign which are developed by functionBay, Inc. A virtual mockup for dynamics analysis of the paper feeding mechanism is build on RecurDyn/MTT2D and is simulated. Flexible paper is represented as a series of rigid bars connected by revolute joints and rotational spring dampers. Paper is fed by a contact and friction mechanism on rollers or guides. The slip of the paper and nip force of rollers are measured to estimate the system performance. After a simulation, these performances are automatically send to RecurDyn/AutoDesign which is a sequential approximate optimization tool based on the response surface modeling. RecurDyn/AutoDesign makes the approximate objective function and computes the optimized design points of the design variables and gives them to analysis tool. And then the simulation is repeated with the updated design variables. These processes are repeated until finding a tolerable design optimization. In this paper, a paper feeding mechanism is introduced and it is optimized with the proposed algorithms.

  • PDF

Sequential Estimation in Exponential Distribution

  • Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2007
  • In this paper, we decompose the whole likelihood based on grouped data into conditional likelihoods and study the approximate contribution of additional inspection to the efficiency. We also combine the conditional maximum likelihood estimators to construct an approximate maximum likelihood estimator. For an exponential distribution, we see that a large inspection size does not increase the efficiency much if the failure rate is small, and the maximum likelihood estimator can be approximated with a linear function of inspection times.

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring

  • Kang, Suk-Bok;Seo, Jung-In
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2011
  • In this paper, we derive the maximum likelihood estimator(MLE) and some approximate maximum likelihood estimators(AMLEs) of the scale parameter in an exponentiated half logistic distribution based on progressively Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error(MSE) through a Monte Carlo simulation for various censoring schemes. We also obtain the AMLEs of the reliability function.

Economic production quantity with expontial deterioration

  • Hwang, Hark;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.4 no.1
    • /
    • pp.53-58
    • /
    • 1979
  • Production lot sizing problem for a system with exponentially decaying inventory is considered. From the exact cost function developed under conditions of constant demand and no shortages permitted, an approximate optimal solution is derived. The formula is compared with those of the exact solution obtained from numerical procedure and other existing approximate solution. Finally some notable properties of the formula are investigated and shown to be consistent.

  • PDF

NUMERICAL METHODS FOR A STIFF PROBLEM ARISING FROM POPULATION DYNAMICS

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.161-176
    • /
    • 2005
  • We consider a model of population dynamics whose mortality function is unbounded. We note that the regularity of the solution depends on the growth rate of the mortality near the maximum age. We propose Gauss-Legendre methods along the characteristics to approximate the solution when the solution is smooth enough. It is proven that the scheme is convergent at fourth-order rate in the maximum norm. We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough. The stability of the method is discussed. Several numerical examples are presented.

  • PDF