• 제목/요약/키워드: Approximate Solutions

검색결과 415건 처리시간 0.023초

Shrinkage-Induced Stresses at Early Ages in Composite Concrete Beams

  • Park, Dong-Uk;Lee, Chang-Ho
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2002
  • Stresses that develop due to differential shrinkage between polymer modified cement mortar (PM) and Portland cement concrete (PCC) in a repaired concrete beam at early ages were investigated. Interface delamination or debonding of the newly cast repair material from the base is often observed in the field when the drying shrinkage of the repair material is relatively large. This study presents results of both experimental and analytical works. In the experimental part of the study, development of the material properties such as compressive strength, elastic modulus, interface bond strength, creep constant, and drying shrinkage was investigated by testing cylinders and beams for a three-week period in a constant-temperature chamber. Development of shrinkage-induced strains in a PM-PCC composite beam was determined. In the analytical part of the study, two analytical solutions were used to compare the experimental results with the analytically predicted values. One analysis method was of an exact type but could not consider the effect of creep. The other analysis method was rather approximate in nature but the creep effect was included. Comparison between the analytical and the experimental results showed that both analytical procedures resulted in stresses that were in fair agreement with the experimentally determined values. It may be important to consider the creep effect to estimate shrinkage-induced stresses at early ages.

  • PDF

Photovoltaic System Allocation Using Discrete Particle Swarm Optimization with Multi-level Quantization

  • Song, Hwa-Chang;Diolata, Ryan;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.185-193
    • /
    • 2009
  • This paper presents a methodology for photovoltaic (PV) system allocation in distribution systems using a discrete particle swarm optimization (DPSO). The PV allocation problem is in the category of mixed integer nonlinear programming and its formulation may include multi-valued dis-crete variables. Thus, the PSO requires a scheme to deal with multi-valued discrete variables. This paper introduces a novel multi-level quantization scheme using a sigmoid function for discrete particle swarm optimization. The technique is employed to a standard PSO architecture; the same velocity update equation as in continuous versions of PSO is used but the particle's positions are updated in an alternative manner. The set of multi-level quantization is defined as integer multiples of powers-of-two terms to efficiently approximate the sigmoid function in transforming a particle's position into discrete values. A comparison with a genetic algorithm (GA) is performed to verify the quality of the solutions obtained.

정상 및 미소중력장에서 프로판 층류 제트 삼지 화염의 전파속도에 관한 실험적 연구 (Normal and Micro Gravity Experiments on Propagation Speed of Tribrachial Flame of Propane in Laminar Jets)

  • 이종수;원상희;진성호;;;정석호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.47-54
    • /
    • 2002
  • The propagation speed of tribrachial flame in laminar propane jets has been investigated experimentally under normal and micro gravity conditions. The displacement speed was found to vary nonlinearly with axial distance because flow velocity along stoichiometric contour was comparable to the propagation speed of tribrachial flame for the present experiment. Approximate solutions for velocity and concentration accounting density difference and virtual origins have been used in determining the propagation speeds of tribrachial flame. Under micro gravity condition, the results showed that propagation speed of tribrachial flame is largely affected by the mixture fraction gradients, in agreement with previous studies. The limiting maximum value. of propagation speeds under micro gravity conditions are in good agreement with the theoretical prediction, that is, the ratio of maximum propagation speed to the stoichiometric laminar burning velocity is proportional to the square root of the density ratio of unburned to burnt mixture.

  • PDF

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법 (Set Covering-based Feature Selection of Large-scale Omics Data)

  • 마정우;안기동;김광수;류홍서
    • 한국경영과학회지
    • /
    • 제39권4호
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해 (Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF

HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN-CAHN EQUATION

  • SHIN, JAEMIN;LEE, HYUN GEUN;LEE, JUNE-YUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권1호
    • /
    • pp.1-16
    • /
    • 2017
  • The Allen-Cahn equation is solved numerically by operator splitting Fourier spectral methods. The basic idea of the operator splitting method is to decompose the original problem into sub-equations and compose the approximate solution of the original equation using the solutions of the subproblems. The purpose of this paper is to characterize higher order operator splitting schemes and propose several higher order methods. Unlike the first and the second order methods, each of the heat and the free-energy evolution operators has at least one backward evaluation in higher order methods. We investigate the effect of negative time steps on a general form of third order schemes and suggest three third order methods for better stability and accuracy. Two fourth order methods are also presented. The traveling wave solution and a spinodal decomposition problem are used to demonstrate numerical properties and the order of convergence of the proposed methods.

힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석 (The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method)

  • Lee, J.H.;Kim, B.M.
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.