• Title/Summary/Keyword: Approaches to Learning

Search Result 1,006, Processing Time 0.027 seconds

Web Page Evaluation based on Implicit User Reactions and Neural Networks

  • Lee, Dong-Hoon;Kim, Jae-Kwang;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • This paper proposes a method for evaluating web pages by considering implicit user reaction on web pages. Usually users spend more time and make more reactions, such as clicking, dragging and scrolling, while reading interesting pages. Based on this observation, a web page evaluation method by observing implicit user reaction is proposed. The system is designed with Ajax for observing user reactions, and neural networks for learning correlation between user reactions and usefulness of pages. The amounts of each type of user reactions are inputted to neural networks. Also the numbers of characters and images of pages are used as inputs because the amount of users' behaviors has a tendency to increase as the length of pages increase. The experiment is conducted with 113 people and 74 pages. Each page is ranked by users with a questionnaire. The proposed method shows more close ranking results to the user ranks than Google. That is, our system evaluates web pages more closely to users' viewpoint than Google. Although our experiment is limited, our result shows powerful potential of new element for web page evaluation. Some approaches evaluate web pages with their contents and some evaluate web pages with structural attributes, particularly links, of pages. Web page evaluation is for users, so the best evaluation can be done by users themselves. So, user feedback is one of the most important factors for web page evaluation. This paper proposes a new method which reflects user feedbacks on web pages.

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.

Network Analysis between Uncertainty Words based on Word2Vec and WordNet (Word2Vec과 WordNet 기반 불확실성 단어 간의 네트워크 분석에 관한 연구)

  • Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.247-271
    • /
    • 2019
  • Uncertainty in scientific knowledge means an uncertain state where propositions are neither true or false at present. The existing studies have analyzed the propositions written in the academic literature, and have conducted the performance evaluation based on the rule based and machine learning based approaches by using the corpus. Although they recognized that the importance of word construction, there are insufficient attempts to expand the word by analyzing the meaning of uncertainty words. On the other hand, studies for analyzing the structure of networks by using bibliometrics and text mining techniques are widely used as methods for understanding intellectual structure and relationship in various disciplines. Therefore, in this study, semantic relations were analyzed by applying Word2Vec to existing uncertainty words. In addition, WordNet, which is an English vocabulary database and thesaurus, was applied to perform a network analysis based on hypernyms, hyponyms, and synonyms relations linked to uncertainty words. The semantic and lexical relationships of uncertainty words were structurally identified. As a result, we identified the possibility of automatically expanding uncertainty words.

Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN (Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법)

  • Min, Dongwook;Lim, Hyunseok;Gwak, Jeonghwan
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.134-143
    • /
    • 2020
  • Vehicle License Plate Recognition is one of the approaches for transportation and traffic safety networks, such as traffic control, speed limit enforcement and runaway vehicle tracking. Although it has been studied for decades, it is attracting more and more attention due to the recent development of deep learning and improved performance. Also, it is largely divided into license plate detection and recognition. In this study, experiments were conducted to improve license plate detection performance by utilizing various object detection methods and WPOD-Net(Warped Planar Object Detection Network) model. The accuracy was improved by selecting the method of detecting the vehicle(s) and then detecting the license plate(s) instead of the conventional method of detecting the license plate using the object detection model. In particular, the final performance was improved through the process of removing noise existing in the image by using the Fast-SRGAN model, one of the Super-Resolution methods. As a result, this experiment showed the performance has improved an average of 4.34% from 92.38% to 96.72% compared to previous studies.

Prediction of Drug Side Effects Based on Drug-Related Information (약물 관련 정보를 이용한 약물 부작용 예측)

  • Seo, Sukyung;Lee, Taekeon;Yoon, Youngmi
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.21-28
    • /
    • 2019
  • Side effects of drugs mean harmful and unintended effects resulting from drugs used to prevent, diagnose, or treat diseases. These side effects can lead to patients' death and are the main causes of drug developmental failures. Thus, various methods have been tried to identify side effects. These can be divided into biological and systems biology approaches. In this study, we use systems biology approach and focus on using various phenotypic information in addition to the chemical structure and target proteins. First, we collect datasets that are used in this study, and calculate similarities individually. Second, we generate a set of features using the similarities for each drug-side effect pair. Finally, we confirm the results by AUC(Area Under the ROC Curve), and showed the significance of this study through a comparison experiment.

Quantile Co-integration Application for Maritime Business Fluctuation (분위수 공적분 모형과 해운 경기변동 분석)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.2
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, we estimate the quantile-regression framework of the shipping industry for the Capesize used ship, which is a typical raw material transportation from January 2000 to December 2021. This research aims two main contributions. First, we analyze the relationship between the Capesize used ship, which is a typical type in the raw material transportation market, and the freight market, for which mixed empirical analysis results are presented. Second, we present an empirical analysis model that considers the structural transformation proposed in the Hyunsok Kim and Myung-hee Chang(2020a) study in quantile-regression. In structural change investigations, the empirical results confirm that the quantile model is able to overcome the problems caused by non-stationarity in time series analysis. Then, the long-run relationship of the co-integration framework divided into long and short-run effects of exogenous variables, and this is extended to a prediction model subdivided by quantile. The results are the basis for extending the analysis based on the shipping theory to artificial intelligence and machine learning approaches.

Study on the Production Process of Performance Arts Visualization Projects: Focused on a Case Analysis of NT Live Cinema Broadcasts (공연예술 영상화 제작과정 연구:NT Live 시네마 브로드캐스트 사례분석을 중심으로)

  • Park, Jin-Won;Kim, Ga-eun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.45-58
    • /
    • 2021
  • This study aims to select representative performance art visualization projects that react to changes in the culture enjoyment methods and needs of contemporary performance art consumers for performance art culture value creation and vitalization that suit the Fourth Industry and a global age, verify new cultural value creation possibilities of performance projects, and look into important matters and keynotes of production processes. Focusing on the report 'NT Live-Digital broadcast of theatre Learning from the pilot season'(2011), a thorough analysis was conducted on the Royal National Theatre of England, a leading model of cinema broadcast performance visualization projects, including the purpose, production processes (copyright agreements, personnel compositions, filming and broadcasting), marketing methods, and audiences of its "NT Live" project and observations were made of production processes and cultural and artistic values that differ from existing performance art to examine administrative and financial keynotes for the sustainability of performance visualization projects. Through this, possibilities of source creations with artistic, cultural, and economic values that cinema broadcast (live performance broadcast) performance viewing methods have as a new form of performance art products can be verified. In addition, the development of various performance approaches that respond to the culture enjoyment methods and consumption patterns of audiences will result in the vitalization of performing arts visualization projects through the enhancement of popular appeal and the expansion of audience types of the performing arts field.

A Study of Academic Achievement Based on University Remote Video Lecture Type During the COVID-19 Pandemic (COVID-19로 인한 대학교 원격 화상강의 유형에 따른 학업 성취도에 대한 연구)

  • Kim, Hye-Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.397-404
    • /
    • 2021
  • This study examined how different types of remote video lectures, which universities are using in earnest now due to the COVID-19 pandemic, impact the academic achievement of learners. Zoom-based remote video lectures were divided into two types-general lecture-centered and group task-oriented-and experimental and control groups were set up accordingly. An achievement test and a questionnaire were conducted to determine how academic achievement differed between these two approaches. The achievement test revealed no significant differences in achievement scores between the two groups. Meanwhile, the questionnaire regarding satisfaction with Zoom-based video lectures indicated that both groups were highly satisfied. Participants in the general lecture-centered type group cited the effect of learning, their instructors' class preparation and attitudes towards the class, and the promotion of participation in learning activities as the causes of their satisfaction, while participants in the task-oriented type group highlighted communication and sharing, the efficiency of group discussions, and the moderate difficulty level of group tasks as the reasons for their satisfaction with the video lectures. Remote video lectures in the untact era are becoming increasingly common, and educators will need to develop various Zoom-based teaching strategies to maximize their efficiency.

Comparative analysis of wavelet transform and machine learning approaches for noise reduction in water level data (웨이블릿 변환과 기계 학습 접근법을 이용한 수위 데이터의 노이즈 제거 비교 분석)

  • Hwang, Yukwan;Lim, Kyoung Jae;Kim, Jonggun;Shin, Minhwan;Park, Youn Shik;Shin, Yongchul;Ji, Bongjun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.209-223
    • /
    • 2024
  • In the context of the fourth industrial revolution, data-driven decision-making has increasingly become pivotal. However, the integrity of data analysis is compromised if data quality is not adequately ensured, potentially leading to biased interpretations. This is particularly critical for water level data, essential for water resource management, which often encounters quality issues such as missing values, spikes, and noise. This study addresses the challenge of noise-induced data quality deterioration, which complicates trend analysis and may produce anomalous outliers. To mitigate this issue, we propose a noise removal strategy employing Wavelet Transform, a technique renowned for its efficacy in signal processing and noise elimination. The advantage of Wavelet Transform lies in its operational efficiency - it reduces both time and costs as it obviates the need for acquiring the true values of collected data. This study conducted a comparative performance evaluation between our Wavelet Transform-based approach and the Denoising Autoencoder, a prominent machine learning method for noise reduction.. The findings demonstrate that the Coiflets wavelet function outperforms the Denoising Autoencoder across various metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE). The superiority of the Coiflets function suggests that selecting an appropriate wavelet function tailored to the specific application environment can effectively address data quality issues caused by noise. This study underscores the potential of Wavelet Transform as a robust tool for enhancing the quality of water level data, thereby contributing to the reliability of water resource management decisions.

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.