• Title/Summary/Keyword: Approach Distance

Search Result 1,357, Processing Time 0.029 seconds

An Interactive Multi-criteria Group Decision Making with the Minimum Distance Measure (최소 거리척도를 이용한 대화형 다기준 그룹 의사결정)

  • Cho, Namwoong;Kim, Jaehee;Kim, Sheung-Kown
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.42-50
    • /
    • 2006
  • The multi-criteria group decision making (MCGDM) problem is to determine the best compromise solution in a set of competing alternatives that are evaluated under conflicting criteria by decision maker (DM)s. In this paper, we propose a mixed-integer programming (MIP) model to solve MCGDM. The existing method based on minimizing a distance measure such as Median Approach can not guarantee the best compromise solution because the element of median point vector is defined with respect to each criteria separately. However, by considering all criteria simultaneously, we generate median point that is better for locating the best compromise solution. We also utilize the concept of spatial dispersion index (SDI) to produce a threshold value, which is used as a guideline to choose either the Utopian Approach or the Median Approach. And we suggest using CBITP (Convex hull of individual maxima Based Interactive Tchebycheff Procedure) to provide DMs with various Pareto-optimal solutions so that DMs have broad range of selection.

Implementation of Long-distance Reflexives in Korean -A Categorial Grammar Approach-

  • Lee, Yong-hun
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.296-307
    • /
    • 2002
  • This paper provides computational algorithms for a Korean reflexive caki, for which both sentence-bound and long-distance readings are possible. Its analyses are based on Chierichia's theory in Categorial Grammar, and a CCG-like system is introduced for the implementation. In this system, we can get both readings of caki with the same resolution mechanisms, while the difference is where the reflexive is resolved. These algorithms enable us to account for the distributions and characteristics off long-distance reflexive caki with a more unified way.

  • PDF

On-line PLC Laboratories Using Distance Learning (원거리 학습을 이용한 실시간 PLC 실습)

  • Lee, Sung-Youl
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.310-315
    • /
    • 2005
  • This paper describes the development of on-line Programmable Logic Controller (PLC) laboratories to teach the detailed operation of a PLC using distance learning approach. The PLC has become a key component to provide intelligence for machines in CIM environment. This study introduces a case study that teaches PLC programming in distance learning environment. The study describes the contents of PLC laboratories and workstation set ups. The study concludes with problems found and proposes the ways to improve the on-line laboratories.

  • PDF

Minimum Hellinger Distance Bsed Goodness-of-fit Tests in Normal Models: Empirical Approach

  • Dong Bin Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.967-976
    • /
    • 1999
  • In this paper we study the Hellinger distance based goodness-of-fit tests that are analogs of likelihood ratio tests. The minimum Hellinger distance estimator (MHDE) in normal models provides an excellent robust alternative to the usual maximum likelihood estimator. Our simulation results show that the Hellinger deviance test (Simpson 1989) based goodness-of-fit test is robust when data contain outliers. The proposed hellinger deviance test(Simpson 1989) is a more direcct method for obtaining robust inferences than an automated outlier screen method used before the likelihood ratio test data analysis.

  • PDF

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

A Framework for Human Body Parts Detection in RGB-D Image (RGB-D 이미지에서 인체 영역 검출을 위한 프레임워크)

  • Hong, Sungjin;Kim, Myounggyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1927-1935
    • /
    • 2016
  • This paper propose a framework for human body parts in RGB-D image. We conduct tasks of obtaining person area, finding candidate areas and local detection in order to detect hand, foot and head which have features of long accumulative geodesic distance. A person area is obtained with background subtraction and noise removal by using depth image which is robust to illumination change. Finding candidate areas performs construction of graph model which allows us to measure accumulative geodesic distance for the candidates. Instead of raw depth map, our approach constructs graph model with segmented regions by quadtree structure to improve searching time for the candidates. Local detection uses HOG based SVM for each parts, and head is detected for the first time. To minimize false detections for hand and foot parts, the candidates are classified with upper or lower body using the head position and properties of geodesic distance. Then, detect hand and foot with the local detectors. We evaluate our algorithm with datasets collected Kinect v2 sensor, and our approach shows good performance for head, hand and foot detection.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

A Method for Local Collision-free Motion Coordination of Multiple Mobile Robots

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1609-1614
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. To implement the concept in collision avoidance of multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

  • PDF

Performance Improvement of Speech/Music Discrimination Based on Cepstral Distance (켑스트럼 거리 기반의 음성/음악 판별 성능 향상)

  • Park Seul-Han;Choi Mu Yeol;Kim Hyung Soon
    • MALSORI
    • /
    • no.56
    • /
    • pp.195-206
    • /
    • 2005
  • Discrimination between speech and music is important in many multimedia applications. In this paper, focusing on the spectral change characteristics of speech and music, we propose a new method of speech/music discrimination based on cepstral distance. Instead of using cepstral distance between the frames with fixed interval, the minimum of cepstral distances among neighbor frames is employed to increase discriminability between fast changing music and speech. And, to prevent misclassification of speech segments including short pause into music, short pause segments are excluded from computing cepstral distance. The experimental results show that proposed method yields the error rate reduction of$68\%$, in comparison with the conventional approach using cepstral distance.

  • PDF

Performance Improvement of Microphone Array Speech Recognition Using Features Weighted Mahalanobis Distance (가중특징 Mahalanobis거리를 이용한 마이크 어레이 음석인식의 성능향상)

  • Nguyen, Dinh Cuong;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.45-53
    • /
    • 2010
  • In this paper, we present the use of the Features Weighted Mahalanobis Distance (FWMD) in improving the performance of Likelihood Maximizing Beamforming (Limabeam) algorithm in speech recognition for microphone array. The proposed approach is based on the replacement of the traditional distance measure in a Gaussian classifier with adding weight for different features in the Mahalanobis distance according to their distances after the variance normalization. By using Features Weighted Mahalanobis Distance for Limabeam algorithm (FWMD-Limabeam), we obtained correct word recognition rate of 90.26% for calibrate Limabeam and 87.23% for unsupervised Limabeam, resulting in a higher rate of 3% and 6% respectively than those produced by the original Limabearn. By implementing a HM-Net speech recognition strategy alternatively, we could save memory and reduce computation complexity.