• Title/Summary/Keyword: Applied calculation ability

Search Result 39, Processing Time 0.023 seconds

Effects of Continuous Speech Therapy in Patients with Non-fluent Aphasia Using kMIT (kMIT를 이용한 비유창성 실어증 환자 음성 언어의 치료효과 연구)

  • Lee Ju Hee;Ko Myun Hwan;Kim Hyun Gi;Hong Ki Hwan
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.16 no.2
    • /
    • pp.158-164
    • /
    • 2005
  • Melody intonation therepy (MIT) is to improve the linguistic aspects of the verbal utterance for aphasic patients utilizing the intact right brain. It is applied to the aphasic patients with good comprehension, poor fluency, and little available speech are thought to be ideal candidates. The purpose of the study was to investigate the effects of Korean Melody intonation therapy (kMIT) in patients with non-fluent aphasia. Five male non-fluent aphasic patients were participated in this study. Average ages were 49.9 years old. Each therapy took 45-50minutes once a week for six months. Aphasic Screen lest (RISS) was used to assess language parameter such as Auditory comprehension, oral expression, reading, writing and calculation ability before and after kMIT. Mean of Length Utterance, verbal intelligibility and articulation disorder were assessed also. Computerized Speech Lab was used to assess the acoustic characteristics of aphasic patients before and after kMIT. The results are as follows : 1) Auditory comprehension, oral expression, reading, writing and calculation ability of the subjects increased after UH'. However, only oral expression showed significant difference (p<0.05). 2) Mean of Length Utterance of five patients generally increased after Un. 3) After kMIT, verbal intelligibility increased and showed significant difference (p<0.05). 4) Misarticulation rate generally decreased after m. 5) Voice Onset Time of the alveolar lenis /t/ and velar lenis /k/ gradually decreased after kMIT. 6) However, intonation pattern were increased gradually in yes'no question after kMIT.

  • PDF

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

Teaching Mathematics using Mathematica (Mathematica를 활용한 수학 지도)

  • 허혜자
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.541-551
    • /
    • 1998
  • Recently, the importance of participating in classes activity and cultivating student's thinking ability is emphasized in the mathematics education society. Teachers are demanded to change their teaching style centered pencile-and paper into using the variety instructional aids, such as calculator, video tape, computer, ohp, and projector, etc. In this paper, we search for the mathematica's function and the method that apply mathematical to the secondary school mathematics. Mathematical has many functions: calculator, algebra, graphics, animations, programing, notebook. We find that mathematica can be applied to the graph of function, the understand of simultaneous equations, the graph of trigonometry function, the calculation of limit, the computation of areas as limits, the derivative of a function and tangent line, a solid figure, and others in secondary school mathematics.

  • PDF

Marginal Loss Factor using Optimal Power Flow in Power Market (최적조류계산을 이용한 한계손실계수의 전력시장 적용)

  • Ko, Young-Jun;Shin, Dong-Joon;Kim, Jin-O;Lee, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.509-511
    • /
    • 2001
  • In the competitive electricity market, various pricing methods are developed and practiced in many countries. Among these pricing methods, marginal loss factor(MLF) can be applied to reflect the marginal cost of network losses. For the calculation of MLF, power flow method has been used. However, it shows some shortcomings such as necessity of regional reference node, and absence of an ability to consider network constraints. The former defect might affect adversely to the equity of market participants and the latter might generate an inappropriate price signal. To overcome these defects, the utilization of optimal power flow(OPF) is suggested in this paper. 30-bus system is used for the case study to compare the MLF by the power flow and the OPF method for 24-hour dispatching and pricing.

  • PDF

Design of Adaptive Regulator Using the Explicit Criterion Minimization (명시적 평가지수 최소화 방법에 의한 적응 레귤레이터의 설계)

  • 이상재;채창현;안태천;조시형
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.997-1004
    • /
    • 1990
  • In this paper, a design method of a robust adaptive regulator with feedfoward path based on the explicit criterion minimization is proposed. The convergence speed of parameter estimation is improved by using the stochastic Newton minimization method in the criterion minimization algorithm, and sensitivity derivatives are used in the regulator calculation for improving the robustness of the control system. Trh proposed adaptive regulator is applied to the stable minimum-phase and nonminimum-phase system, the results are shown that control performance and disturbance compensation ability of the regulator are improved. And the choosing method of input penalty is proposed.

  • PDF

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Accuracy Improvement of the Transport Index in AFC Data of the Seoul Metropolitan Subway Network (AFC기반 수도권 지하철 네트워크 통행지표 정확도 향상 방안)

  • Lee, Mee-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.247-255
    • /
    • 2021
  • Individual passenger transfer information is not included in Seoul metropolitan subway Automatic Fare Collection (AFC) data. Currently, basic data such as travel time and distance are allocated based on the TagIn terminal ID data records of AFC data. As such, knowledge of the actual path taken by passengers is constrained by the fact that transfers are not applied, resulting in overestimation of the transport index. This research proposes a method by which a transit path that connects the TagIn and TagOut terminal IDs in AFC data is determined and applied to the transit index. The method embodies the concept that a passenger's line of travel also accounts for transfers, and can be applied to the transit index. The path selection model for the passenger calculates the line of transit based on travel time minimization, with in-vehicle time, transfer walking time, and vehicle intervals all incorporated into the travel time. Since the proposed method can take into account estimated passenger movement trajectories, transport-related data of each subway organization included in the trajectories can be accurately explained. The research results in a calculation of 1.47 times the values recorded, and this can be evaluated directly in its ability to better represent the transportation policy index.

The Digital PI Control for Driving Constant Speed of Brushless DC Motor (브러시리스 직류전동기의 정속도 운전을 위한 디지털 PI제어)

  • Yoon, Shin-Yong;Kim, Hyun-Soo;Kim, Yong;Kim, Il-Nam;Baek, Soo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.395-402
    • /
    • 2000
  • This paper presents the improvement for speed characteristics of a Brushless DC Motor (BLDCM), it was applied to digital PI control for this. The practical PID control has been widely used to velocity control of DC motors. In this paper, a digital PI controller is used in order to decrease the speed error in constant velocity control of BLDCM. A TMS320C31 DSP is used for the microprocessor of digital PI control. The method using the DSP carry out the real-time control. The DSP has the rapid calculation ability and sampling time used lms. Driving BLDCM used 50W, motor input DC 150V and rotation speed 3000rpm. When BLDCM is to approval for discretion velocity at the acceleration and deceleration driving with any load, it was a feasible for stabilization control. Therefore, the experimental results indicate the superiority and validity of the velocity control by digital PI control.

  • PDF

Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors

  • Safavi, Amir;Esteki, Mohammad Hossein;Mirvakili, Seyed Mohammad;Arani, Mehdi Khaki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1603-1610
    • /
    • 2020
  • Due to ever-growing advancements in computers and relatively easy access to them, many efforts have been made to develop high-fidelity, high-performance, multi-physics tools, which play a crucial role in the design and operation of nuclear reactors. For this purpose in this study, the neutronic Monte Carlo and thermal-hydraulic sub-channel codes entitled MCNP and COBRA-EN, respectively, were applied for external coupling with each other. The coupled code was validated by code-to-code comparison with the internal couplings between MCNP5 and SUBCHANFLOW as well as MCNP6 and CTF. The simulation results of all code systems were in good agreement with each other. Then, as the second problem, the core of the VVER-1000 v446 reactor was simulated by the MCNP4C/COBRA-EN coupled code to measure the capability of the developed code to calculate the neutronic and thermohydraulic parameters of real and industrial cases. The simulation results of VVER-1000 core were compared with FSAR and another numerical solution of this benchmark. The obtained results showed that the ability of the MCNP4C/COBRA-EN code for estimating the neutronic and thermohydraulic parameters was very satisfactory.