• 제목/요약/키워드: Applied caffeine

검색결과 59건 처리시간 0.024초

Catechin and Caffeine Concentration Variations in Jeju Green Tea Varieties Harvested Over a Seven-Month Period

  • Song, Kwan-Jeong;Beak, Dong-Chul;Kim, You-Wang;Kim, Young-Geol;Lee, Min-Seok;Lee, Sam-Pin;Kim, Chan-Shick
    • Preventive Nutrition and Food Science
    • /
    • 제15권3호
    • /
    • pp.229-232
    • /
    • 2010
  • Caffeine and catechins from the Yabukita, Yutakamidori, Saemidori, Okumidori, and Fushun varieties of tea leaves picked during different harvesting seasons from April to October were evaluated using HPLC. Total content of catechins increased greatly with the later harvesting time of tea leaves (i.e., picking the leaves in September versus in April) and decreased slightly after September. Yabukita tea leaves picked in August contained 43.1 mg% catechins including EGC, EC, ECG, and EGCG, with the ECGC levels constituting greater than 50% of those four compounds. Yutakamidori and Okumidori varieties picked in September contained the highest catechin values, at 43.6 mg% and 31.0 mg%, respectively. Fushun and Saemidori varieties contained lower catechin concentrations of 14.5 mg% (July) and 11.7 mg% (August) compared to other varieties. The EGCG levels gradually decreased in the late harvesting season, while levels of the other catechins, EC, EGC, and ECG, gradually increased. All varieties of green tea showed a gradual decrease in caffeine content toward the end of our harvesting efforts in October, with levels of 58~68 mg% in April and 28~57 mg% in October. Yabukita, Saemidori, and Okumidori varieties reached their highest caffeine levels in late spring/early summer, with Yabukita and Okumidori varieties reaching a high of 73.4% and 63.5% caffeine, respectively, in May, and Saemidori at 64.0% in June. In particular, Fushun still contained high caffeine of 66.8 mg% (September) during the late harvesting season.

단거리 육상선수들의 고강도 훈련 시 카페인을 도포한 기능성 테이핑이 피로물질에 미치는 영향 (The Effect of Using the Functional Taping Applied Caffeine on Fatigue Substance during High-Intensity Training in Sprint Runners)

  • 김상엽
    • 디지털융복합연구
    • /
    • 제12권5호
    • /
    • pp.491-500
    • /
    • 2014
  • 본 연구는 카페인을 도포한 기능성 테이핑 유 무에 따른 고강도 훈련 시 피로물질 향상에 미치는 영향을 알아봄으로써 운동 수행시의 피로 및 경기 수행력 향상을 위한 수단으로서 카페인을 도포한 기능성 테이핑 효과에 대한 기초 자료를 제공하고자 남자 대학생 육상 단거리 선수 10명을 대상으로, 피로물질인 젖산, 혈중젖산탈수소효소(LDH), 무기인산의 3가지 혈중 성분을 분석한 결과 다음과 같은 결론을 얻었다. 첫째, 카페인을 도포한 기능성 테이핑을 적용한 그룹이 고강도 훈련그룹에 비해 젖산은 훈련 직후에 낮은 증가율을 보였다. 둘째, 카페인을 도포한 기능성 테이핑을 적용한 그룹이 고강도 훈련그룹에 비해 혈중젖산탈수소효소(LDH)는 훈련 직후에 낮은 증가율을 보였다. 셋째, 카페인을 도포한 기능성 테이핑을 적용한 그룹이 고강도 훈련그룹에 비해 무기인산은 훈련 직후에 낮은 증가율을 보였다. 이상의 결과와 같이 육상단거리 선수들에게 카페인을 도포한 기능성 테이핑을 적용한 그룹과 고강도훈련이 피로물질인 젖산, 혈중젖산탈수소효소(LDH), 무기인산에 긍정적인 방향으로 변화시킬 수 있는 방법이라는 것을 확인할 수 있었다.

Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice

  • Ko, Yong-Hyun;Shim, Kyu-Yeon;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.432-438
    • /
    • 2018
  • Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the $GABA_A$-ergic system.

카페인이 HRV에 미치는 영향과 내관 자침의 효과에 대한 예비연구 : 무작위 이중맹검시험 (Short Time Effect of Caffeine on Heart Rate Variability and the Effect of Acupuncture at Neiguan (PC6): A Randomized Double Blind Pilot Study)

  • 정현숙;양창섭;남지성;장인수;김락형;서의석
    • 대한한방내과학회지
    • /
    • 제29권3호
    • /
    • pp.778-786
    • /
    • 2008
  • Objectives : This study was to investigate the short time effect of caffeine on heart rate variability(HRV) and the effect of Neiguan(PC6) acupuncture stimulation on HRV. Methods : 27 healthy adult volunteers were randomly allocated to two groups: Neiguan group (N=13) or placebo group (N=14). The study was carried out under a randomized double-blinded placebo-controlled trial method. Each group orally received the same tablets with 200 mg caffeine. After 1 hour, acupuncture was applied to the Neiguan(PC6) points for the Neiguan group, and for the placebo group was applied to a non-acupuncture point. Both groups were estimated with HRV 3 times, before and after caffeine ingestion, 20 minutes after acupuncture stimulation. Results : After taking caffeine, pulse rate, mean-HRV, and pNN50(the proportion derived by dividing NN50 by the total number of NN intervals) decreased, SDNN(standard deviation of all normal-to-normal (NN) intervals), RMSSD (the root square of successive differences), TP log, HF(high frequency), and HRV index was increased. There were significant changes to the autonomic nervous system after taking caffeine. There were no significant differences between the two groups after acupuncture at Neiguan. Conclusion : Caffeine could induce general activation of the autonomic nervous system. Neiguan acupuncture stimulation may not have significant influence on the autonomic nervous system.

  • PDF

Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

  • Mabunga, Darine Froy N.;Gonzales, Edson Luck T.;Kim, Hee Jin;Choung, Se Young
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.268-274
    • /
    • 2015
  • ${\gamma}$-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice.

Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer

  • Jin, Yinzhe;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.276-280
    • /
    • 2007
  • In this work, caffeine and some catechin compounds + C, EC, EGC, and EGCG were extracted from green tea by using molecular imprinted polymers (MIP) as sorbent materials in a solid-phase extraction (SPE) process known as MISPE (molecular imprinted solid-phase extraction). For synthesis of MIP, caffeine was employed as the template, MAA as the monomer, EGDMA as the crosslinker, and AIBN as the initiator. A solution of caffeine (0.2 mg/mL in methanol) was utilized in the solid extraction cartridges following loading, washing, and elution procedures with acetonitrile, methanol, and methanol-acetic acid (90/10, %v/v) as the solvents, respectively. This solid-phase extraction protocol was applied for the extraction of caffeine and some catechin compounds from green tea. A comparison was made between the results obtained with the MIP cartridges and a traditional C18 reversed-phase cartridge. It was thereupon found that the recovery of caffeine by the MIPbased sorbent used in this work was almost two and four times greater than that by a commercially available C18 material. A quantitative analysis was conducted by high performance liquid chromatography (HPLC) using a C18 column (5 μm, 250 × 4.6 mm) with methanol/water (40/60, %v/v) as the mobile phase at a flow rate of 0.5 mL/min.

Pharmacokinetic Interaction of Chrysin with Caffeine in Rats

  • Noh, Keumhan;Oh, Do Gyeong;Nepal, Mahesh Raj;Jeong, Ki Sun;Choi, Yongjoo;Kang, Mi Jeong;Kang, Wonku;Jeong, Hye Gwang;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.446-452
    • /
    • 2016
  • Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.

Effects of Rutaecarpine on the Pharmacokinetics of Caffeine and Its Three Metabolites in Rats

  • Seo, Young-Min;Noh, Keum-Han;Kong, Min-Jeong;Lee, Dae-Hun;Kang, Mi-Jeong;Jahng, Yurng-Dong;Kang, Won-Ku;Jeong, Byeong-Seon;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.243-247
    • /
    • 2011
  • Rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, has been shown to be anti-inflammatory. In the present study, a possible interaction between rutaecarpine and caffeine was investigated in male Sprague Dawley rats. Twenty four hr after the oral pretreatment with rutaecarpine at 80 mg/kg for three consecutive days, rats were treated intravenously with 10 mg/kg of caffeine. Compared with control rats, the pharmacokinetic parameters of caffeine in rutaecarpine-pretreated rats were significantly changed, possibly due to the rapid metabolism. The production of three metabolites of caffeine (i.e., paraxanthine, theobromine and theophylline) was also significantly changed in rats pretreated with rutaecarpine. The present results suggest that oral rutaecarpine would change the intravenous pharmacokinetic characteristics of caffeine.

Two combined amino acids promote sleep activity in caffeine-induced sleepless model systems

  • Hong, Ki-Bae;Park, Yooheon;Suh, Hyung Joo
    • Nutrition Research and Practice
    • /
    • 제12권3호
    • /
    • pp.208-214
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: The aim of this study was to evaluate the biological and sleep-promoting effects of combined ${\gamma}$-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) using caffeine-induced sleepless fruit flies, ICR mice, and Sprague-Dawley rats. MATERIALS/METHODS: Video-tracking analysis was applied to investigate behavioral changes of Drosophila melanogaster. Pentobarbital-induced sleep test and electroencephalogram (EEG) patterns were used for analysis of sleep latency, duration, and quantity and quality of sleep in vertebrate models. RESULTS: Administration of combined GABA/5-HTP could significantly reverse the caffeine induced total distance of flies (P < 0.001). Also, individually administered and combined GABA/5-HTP significantly increased the total sleeping time in the caffeine-induced sleepless ICR mice (P < 0.001). In the caffeine-induced sleepless SD-rats, combined GABA/5-HTP showed significant differences in sleep quality between individual amino acid administrations (P < 0.05). CONCLUSIONS: Taken together, we identified inhibitory effects of combined GABA/5-HTP in locomotor activity, sleep quantity and quality in caffeine-induced sleepless models, indicating that combined GABA/5-HTP may be effective in patients with insomnia by providing sufficient sleep.

Effects of Caffeine and Pentoxifylline on Pharmacokinetics of Propentofylline

  • Kwon, Oh-Seung;Kim, Min-Hee;Ryu, Jae-Chun;Chung, Youn-Bok
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.122-122
    • /
    • 1998
  • Propentofylline (PPF), a xanthine derivative, has been reported to be effective for the treatment of both vascular dementia and Alzheimer's disease. The elimination half-life of PPF was ranged from 15 to 45 min in rabbit and human, and PPF was rapidly disappeared from the blood. The objective of this experiment is to investigate whether xanthine analogues have effects on the profile of plasma concentration and metabolism of PPF. Caffeine (50 mg/kg, ip) was treated to Sprague-Dawley rats for consecutive 7 days and PPF was intravenously administered to rats 2 hr after the last dose of caffeine. In the other group, PPF was intravenously administered to rats 1 hr after a single dose of pentoxifylline (50 mg/kg, iv). Control group was treated with saline vehicle for the same period as in treatment groups. Blood was withdrawn at specific time intervals. PPF and one of its metabolite (POH) in plasma were determined by gas chromatography/nitrogen phosphorus detector. Plasma concentrations and pharmacokinetic parameters were compared between groups. The area under the curve (AUC) of PPF in rats treated sub chronically with caffeine was significantly decreased compared to control rats. Caffeine treatment results in a significant increase of total body clearance. The AUC of POH was significantly decreased in the caffeine-treated group. A single dose of pentoxifylline has no effect on the phramacokinetics of PPF. Reduction of the AUCs of PPF and POH both suggests that caffeine may increase the excretion of PPF with no affecting the metabolism of PPF to POH.

  • PDF