• 제목/요약/키워드: Applied Mechanics of Materials

검색결과 263건 처리시간 0.023초

채굴적 경사에 따른 그라우트 주입량 결정에 관한 연구 (A Study on the Determination of Grout Injection Volume according to the Angle of Mine Cavity)

  • 이병윤;전석원;김태현;조정우;김관일;김태혁;김수로
    • 터널과지하공간
    • /
    • 제19권2호
    • /
    • pp.107-122
    • /
    • 2009
  • 채산성과 경제성에 따라 별다른 보강조치 없이 방치되고 있는 광산채굴적은 지반침하를 유발하여 주민들의 생명과 재산을 위협하고 있다. 따라서 지반침하가 우려되는 지역에 대한 보강의 필요성이 제기되어 현재 다양한 보강공법들이 적용되고 있다. 이중 가장 광범위하게 사용되고 있는 공법은 채굴적 내부로 보강재료를 압송하는 충전공법이다. 국내의 복잡한 지질환경과 채탄법은 다수의 급경사 채굴적을 형성하고 있어 수평 채굴적에 주로 적용되었던 외국의 공법을 그대로 적용할 경우 효율적인 보강효과를 기대하기 어렵다. 본 연구에서는 국내의 급경사 채굴적 충전을 위해 개발된 급결그라우트 재료의 기본물성 및 고결체 형성 형태를 파악하고, 급결그라우트 댐 및 후방에 주입 가능한 뒤채움 재료의 적절 주입량 산정을 위한 도식법을 제안하였다. 도식법에 의해 계산된 결과는 UDEC 수치해석을 통해 타당성을 검증하였다.

발파전색재료 및 플러그 장치의 발파효과 검증 연구 (The Study on the Verification of the Blasting Effect of Blast Stemming Material and Plug Device)

  • 고영훈
    • 터널과지하공간
    • /
    • 제32권4호
    • /
    • pp.272-284
    • /
    • 2022
  • 본 연구에서는 개발 중인 전단농화유체(shear thickening fluid) 기반의 발파전색재료와 밀폐 플러그 장치의 효과를 평가하기 위하여 터널발파를 수행하였다. SAV-Cut공법을 적용하고 있는 터널현장에 STF 단일전색 및 STF 전색재를 플러그와 결합하여 적용하였고, 기존 방식의 모래전색을 적용한 케이스와 굴진율 및 파쇄입도를 비교하였다. 터널 굴진율은 3차원 레이저 스캐너를 이용하여 평가하였다. STF 전색재료와 STF 전색재료에 플러그를 결합한 경우 모래전색 대비 각 5.7, 5.36% 정도 굴진율이 향상되는 것을 확인하였다. 파쇄입도의 경우 STF 전색재료를 적용하였을 경우 가장 좋게 나타났으며, 모래 전색케이스와 비교하였을 때 약 61% 파쇄입도가 감소하였다. 그러나 플러그 장치적용에 따른 뚜렷한 발파 효과 향상은 관찰되지 않았다.

비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가 (Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method)

  • 곽남수;이승철
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6432-6439
    • /
    • 2014
  • NAUT(Non contact Air coupled Ultrasonic Testing)기법은 초음파 탐상법 중의 하나로서 공기중 음향 임피던스의 차이로 생기는 에너지 손실을 High Power 초음파 Pulser Receiver, PRE-AMP, 고감도의 탐촉자로 보완하여 비접촉식으로 초음파 탐상을 가능하게 하는 탐상 방법이다. NAUT는 초음파의 송신 및 수신이 안정된 상태에서 이루어지므로 기존의 접촉식 탐상으로는 불가능하였던 고온, 저온의 물질이나 시험편의 표면이 거친 부분, 좁은 지점 등에서도 탐상이 가능하다. 본 연구에서는 NAUT기법의 산업체 실용여부를 알아보기 위해 자동차생산 공정에서 많이 사용하는 스폿용접부 및 CFRP 제품에 있어 상용화 연구를 통해 다음과 같은 결과를 얻었다. 본 연구에서는 NAUT기법의 사용 여부를 알아보기 위해 자동차 부품에서 많이 사용하는 스폿용접부 및 CFRP 부품의 내부결함 검출을 검출하였다. 스폿용접부에서는 초음파의 투과율이 높아 적색으로 나타났으며, 복층으로 된 부분은 투과율이 낮아 청색 화상이 나타났다. 또한 측정 속도를 결정하는 중요요소인 PRF(Pulse Repetition Frequency;송신펄스주기)에 따라 색상 선명도의 차이를 보였다. CFRP 시험편 또한 화상장치를 통해 취득된 각 화상 결과를 보고 내부 결함의 모양, 크기, 위치 등의 파악이 단시간에 가능하였다. 실험을 통해 NAUT기법과 화상화가 동시에 이루어짐을 확인하였고, 스폿 용접부와 CFRP 탐상에 NAUT의 적용이 가능한지 그 실현여부를 확인하였다.

The effect of mortar type and joint thickness on mechanical properties of conventional masonry walls

  • Zengin, Basak;Toydemir, Burak;Ulukaya, Serhan;Oktay, Didem;Yuzer, Nabi;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.579-585
    • /
    • 2018
  • Masonry walls are of a complex (anisotropic) structure in terms of their mechanical properties. The mechanical properties of the walls are affected by the properties of the materials used in wall construction, joint thickness and the type of masonry bond. The carried-out studies, particularly in the seismic zones, have revealed that the most of the conventional masonry walls were constructed without considering any engineering approach. Along with that, large-scale damages were detected on such structural elements after major earthquake(s), and such damages were commonly occurred at the brick-joint interfaces. The aim of this study was to investigate the effect of joint thickness and also type of mortar on the mechanical behavior of the masonry walls. For this aim, the brick masonry walls were constructed through examination of both the literature and the conventional masonry walls. In the construction process, a single-type of brick was combined with two different types of mortar: cement mortar and hydraulic lime mortar. Three different joint thicknesses were used for each mortar type; thus, a total of six masonry walls were constructed in the laboratory. The mechanical properties of brick and mortars, and also of the constructed walls were determined. As a conclusion, it can be stated that the failure mechanism of the brick masonry walls differed due to the mechanical properties of the mortars. The use of bed joint thickness not less than 20 mm is recommended in construction of conventional masonry walls in order to maintain the act of brick in conjunction with mortar under load.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

Development of a retrofit anchor system for remodeling of building exteriors

  • Yeun, Kyu Won;Hong, Ki Nam;Kim, Jong
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.839-856
    • /
    • 2012
  • To enable remodeling of the exterior of buildings more convenient, such finishing materials as curtain walls, metal panels, concrete panels or dry stones need to be easily detached. In this respect, this study proposed a new design of the slab for the purposes. In the new design, the sides of the slab were properly modified, and the capabilities of anchors fixed in the modified slab were experimentally tested. In details, a number of concrete specimens with different sizes and compressive strengths were prepared, and the effect of anchors with different diameters and embedment depths applied in the concrete specimens were tested. The test results of the maximum capacities of the anchors were compared with the number of current design codes and the stress distribution was identified. This study found that the embedment depth specified in the current design code (ACI318-08) should be revised to be more than 1.5 times the edge distance. However, with the steel sheet reinforcement, the experiment acquired higher tensile strength than the design code proposed. In addition, for two types of specimens in the tensile strength experiment, the current design code (ACI 318-08) is overestimated for the anchor depth of 75 mm. This study demonstrated that the ideal breakout failure was attainable for the side slot details of a slab with more than 180 mm of a slab thickness and less than 75 mm of an anchor embedment depth. It is expected that these details of the modified slab can be specified in the upgraded construction design codes.