• Title/Summary/Keyword: Application to ship

Search Result 774, Processing Time 0.027 seconds

Conservation of Waterlogged Wooden Finds Excavated in Wet-Site (저습지 출토 목재유물의 보존과 현황)

  • Yi, Yong Hee
    • Journal of Conservation Science
    • /
    • v.6 no.2 s.8
    • /
    • pp.126-140
    • /
    • 1997
  • There were some cases in the past that waterlogged wooden finds were neglected and damaged severely because adequate methods of conservation processing could not be found. However, since a wooden ship unearthed in Anapji of Kyongju was processed by poly(ethylene glycol) (PEG) impregnation method in 1975, most of waterlogged wooden finds have been processed by diverse scientific methods. Most commonly-used conservation processing methods of waterlogged wooden finds in Korea are PEG impregnation method, alcohol-ether-resin method and vacuum freeze-drying method. New methods developed recently in Europe and Japan such as sucrose method, sugar-alcohol method and higher alcohol method are also being studied here. The most important task in conservation processing of waterlogged wood is to find good impregnation materials suitable to Korean climate and environments and develop their application methods. For efficient conservation processing, it is important to know the natures of finds and impregnation materials and relation between impregnation and drying condition. To achieve it, many experiments and studies are needed.

  • PDF

A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation (위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

A Study on the Application of Drone to Prevent the Spread of Green Tides in Lake Environment (호수 환경의 녹조 확산 방지를 위한 드론 적용 방안에 관한 연구)

  • Jin-Taek Lim;Woo-Ram Lee;Sang-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Recently, water shortages have occurred due to climate change, and the need for water management of agricultural water has increased due to the occurrence of algal blooms in reservoirs. Existing algae prevention is operated by putting many people on site and misses the optimal spraying time due to movement through boats. In order to solve this problem, it is necessary to block contamination in advance and move within time to uniformly spray complex microorganisms uniformly. Control drones are used for pesticide spraying and can be applied to algae prevention work by utilizing control drones. In this paper, basic research for the establishment of a marine control system was conducted for application to the reservoir environment, and as one of the results, the characteristics of a drone nozzle, a core technology that can be used for control drones, were calculated. In particular, it was found that the existing agricultural control drones had a disadvantage that the concentration was non-uniform within the suggested spraying interval, and to compensate for this, nozzle positioning and nozzle spraying uniformity were calculated. Based on the experimental results, we develop a core algorithm for establishing an algal bloom monitoring system in the reservoir environment and propose a precision control technology that can be used for marine control work in the future.

Prediction of Matching Performance of Two-Stage Turbo-charging System Design for Marine Diesel Engine (선박용 디젤엔진의 2단과급 시스템설계를 위한 매칭성능 예측)

  • Bae, Jin-woo;Lee, Ji-woong;Jung, Kyun-sik;Choi, Jae-sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.626-632
    • /
    • 2015
  • The International Maritime Organization (IMO) has adopted several regulations for the prevention of air pollution from ships. In addition, there is a requirement for shipping liners to reduce greenhouse gas emissions. Accordingly, we need to take measurements to ensure that the steps taken are both efficient and environmentally friendly. It has been determined that the application of the Miller cycle in diesel engines has the effect of both reducing the amount of NOx and improving thermal efficiency. However, this method requires a considerably larger charge air pressure. Therefore, we consider a two-stage turbo-charging system, which not only results in a high charging pressure, but also improves the part load performance with an exhaust-gas bypass system or the application of the Miller cycle. Because of complications associated with the two-stage turbo-charging system, it is complex and difficult to realize a design that optimizes matching between diesel engine and turbo-chargers. Accordingly, it is necessary to perform a quantitative analysis to determine the effects and optimal conditions of these different systems in the early stage of system design. In this paper, we develop a simulation program to model these systems, and we verify that the results of this program are reliable. Further, we discuss methods that can be employed to improve its efficiency.

Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design (선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用))

  • Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

A Study on the Temperature Dependence of Electro-Rheological Fluids with Electric Field Control (전기장 제어에 따른 ER유체의 온도 의존성에 관한 연구)

  • Jang, Sung-Cheol;Park, Chang-Soo;Lee, Chan-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2004
  • Electro-Rheological(ER) fluids consist of suspensions of fine polarizable particles In a dielectric oil, which upon application of an external electric field control take on the characteristics of the Bingham solid. In this study, the temperature dependence of the viscosity was Investigated for an ER fluid consisting of 35 weight % of zeolite particles in hydraulic oil 46cSt. Thermal activation analysis was performed by changing the ER fluid's temperature from $-10^{\circ}C$ to $50^{\circ}C$. According to the analysis, the activation energy for flow of the ER fluid was 79.6 kJ/mole without applying electric field. On the other hand, with the electric field of 2kV/mm, the linearity between viscosity and temperature was not existed By changing the temperatures the viscosity (or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to $200s^{-1}$ in 2 minutes. Generally, the hydraulic oil 46cSt will be operated at the temperature of about $40^{\circ}C$, thus, the ER fluid's electric field dependence of viscosity was examined at this temperature. Also, an influence of adding the dispersant(Carbopl 940) on ER effect was discussed.

  • PDF

Risk Assessment of Strong Wind over Industrial Facilities in Shipyards (조선소 시설물의 강풍 위험 평가)

  • Lee, Sung-Su;Kim, Hak-Sun;Lee, Young-Kyu;Shim, Kyu-Cheoul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • Most of domestic shipyards are located at coastal regions which are affected by typhoons nearly every year. For effectiveness of shipbuilding, shipyards contain many facilities which are light-weighted and affected dominantly by wind. In the present paper, we analyze various wind fields over a shipyard including surrounding topology and structures to evaluate the structural safety of the facilities posed in the strong wind. Extreme wind speed for a study region was estimated by typhoon Monte Carlo simulation and then used for inlet wind speed for CFD analysis for wind load on the facilities. Considering geometrical wind effects, we assess the surface pressure of the elements as the pressure factor, the ratio of surface pressure to dynamic pressure. The results show that the simulated wind speed is greater than the design wind speed for the some facilities because of the shipyard's geometry. It also shows that surrounding topography in coastal area is needed to be considered and adjustment for design wind speed at wind load standard application is necessary for mooring ship and industry facilities.

A Development of Macroscopic Simulation Model for Interrupted Flow using Shockwave (충격파를 이용한 거시적 단속류 시뮬레이션 모형개발)

  • Lee, Ho-Sang;Jung, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.191-201
    • /
    • 2008
  • It has been employed TRANSYT-7F and NETSIM to evaluate the validity and effectiveness of improvement on TSM(Transportation Systems Management). But T7F is hard to describe platoon compression and dispersion in actually, and NETSIM takes a long time for network coding, calibration and have difficulty in setting up saturation flow. While Shockwave Model have advantage which can describe platoon compression and dispersion in actually and shorten hours, convenience of application. But Shockwave Model apply unrealistic traffic flow relation ship(U-K curve) and simplify platoon because of difficulty in calculating shockwave's position and cross. For solving limitation of existing shockwave models, It develop new model with 2-regime linear model, New platoon model, Extended shockwave, etc. For verifying the validity of the proposed model, it was compared with delay of T7F and NETSIM by offset variation. In conclusion, it is thought that proposed model have outstanding performance to simulate traffic phenomenon.

Experiments and Numerical Analysis on a System for Collecting Organic Sediment from Seabed (해저유기퇴적물 수거시스템의 실험 및 수치해석)

  • Kim, Do-Jung;Park, Je-Woong;Jeong, Uh-Chul;Kim, Seoung-Gun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Contaminated sediments are the actual cause for deterioration of coastal-ecosystem. So the developed countries have been in the process of making an effort to develop new techniques for monitoring and solving this problem since 1960. In this research, suction type pump dredging system of pilot size for collecting the filth from the seabed has been designed and manufactured that can prevent or minimize the secondary pollution by filth diffusion. For the practical use, the application possibility of the developed system has been checked through a system performance test. And, the evaluation of system performance according to the underwater body type has been carried out for system optimization by using CFD. The performance tests for checking the efficiency of sediment collecting system are done under two conditions i.e. when the system is non-operational and when the system is self-propelled. The results of this research showed the possibility of the development of dredging system to remove just the upper parts of filth from seabed.

  • PDF

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF