• Title/Summary/Keyword: Application prospects

Search Result 206, Processing Time 0.03 seconds

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

A Study on the Application of High-Power GaN SSPA for Miniature Radar (GaN 고출력 증폭기의 초소형 레이다 적용에 관한 연구)

  • Lee, Sang_yeop;Yi, Jaewoong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2016
  • Trend on high-power GaN(Gallium Nitride) SSPA(Solid-State Power Amplifier) and its availability in miniature radar systems are presented. There are numerous studies on high-power GaN devices since they have some characteristics of high-breakdown voltage, high power density, and high-temperature stability. Recent scaled GaN technology makes it possible to apply it in SSPAs for W- and G-band applications, with increasing its maximum frequency. In addition, it leads to downsizing and power-efficiency improvement of SSPAs, which means that GaN SSPAs can be available in miniature radar systems. This study also shows radar performance and comparison in the case of using such SSPAs at three frequency bands of Ku, Ka, and W. Finally, we demonstrate prospects of scaled GaN SSPAs in future miniature radar systems.

Reflections on the US FDA's Warning on Direct-to-Consumer Genetic Testing

  • Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.151-155
    • /
    • 2014
  • In November 2013, the US Food and Drug Administration (FDA) sent a warning letter to 23andMe, Inc. and ordered the company to discontinue marketing of the 23andMe Personal Genome Service (PGS) until it receives FDA marketing authorization for the device. The FDA considers the PGS as an unclassified medical device, which requires premarket approval or de novo classification. Opponents of the FDA's action expressed their concerns, saying that the FDA is overcautious and paternalistic, which violates consumers' rights and might stifle the consumer genomics field itself, and insisted that the agency should not restrict direct-to-consumer (DTC) genomic testing without empirical evidence of harm. Proponents support the agency's action as protection of consumers from potentially invalid and almost useless information. This action was also significant, since it reflected the FDA's attitude towards medical application of next-generation sequencing techniques. In this review, we followed up on the FDA-23andMe incident and evaluated the problems and prospects for DTC genetic testing.

Prospects of wind energy on Penghu Island, Taiwan

  • Chen, Tsai-Hsiang;Tran, Van-Tan
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • This study applied long-term wind speed data from Penghu and Dongjidao weather stations to simulate the wind energy production for eight onshore and one offshore wind farms at Penghu Island, Taiwan by a commercial software package, Wind Atlas Application Program (WAsP). In addition, the RET Screen software suite was also applied to analyze economic characteristics of these nine wind farms (WFs). The results show that the capacity factors (CFs) of the nine wind farms mentioned above are in the range of 44.5% to 49.1%. In addition, utilizing 1.8-MW wind turbines (WTs) for all onshore WFs was the most feasible selection among the four potential types of WTs (600, 900, 1,800 and 3,600 kW) considered. 3-MW WTs selected for the offshore WF can produce the most wind energy and the smallest wake loss among the three possible types of WTs (1, 2 and 3MW). As a consequence of implementing these WFs, the emission of about 680,977 tons carbon dioxide ($tCO_2$) into the local atmosphere in Penghu Island annually could be avoided. Finally, based on the payback periods achieved, the order of implementation of the considered WFs can be identified more clearly. Longmen WF should be the first priority, and the next one should be SiyuWF and so on. Besides, this study provides much useful information for WF planning on Penghu Island.

Biomolecular Strategies for Preparation of High Quality Surimi-Based Products

  • Nakamura Soichiro;Ogawa Masahiro
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$, its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during setting in preparation of surimibased products, because heating at high temperatures, after the pre-heating during the setting process, enhances the gel-strength of salted surimi. Contrarily, when salted surimi or low-temperature set gel is heated at moderate temperatures $(50\~70^{\circ}C)$, a deterioration of gel is observed. The phenomenon is termed 'modori'. In the modori temperature range, heat-stable cysteine proteinases such as cathepsin B, H, Land L-Iike hydrolyze the myosins responsible for gel-formation, resulting in gel weakening modori. This article reviews molecular events occurring during gel setting that improve the quality of surimi-based products, and inhibition of modori by applying proteinase inhibitors. Application of recombinant protein technology to surimi-based products is introduced and its prospects for practical use are discussed.

Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

  • Vijayan, Kunjupillai;Singh, Ravindra Nath;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2010
  • The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called "eco-race" or "ecotypes". Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).

Auxin-responsive SMALL AUXIN UP RNA genes : recent research progress and its application for crop improvement (옥신 반응 SMALL AUXIN UP RNA 유전자의 최근 연구 동향 및 작물 개량을 위한 적용)

  • Lee, Sang Ho
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Auxin is a key plant hormone which regulates overall plant growth development. A number of researches to investigate auxin signaling identified three major classes of early auxin response genes: AUX/IAA, GH3 and SMALL AUXIN UP RNA (SAUR). Among these genes, in planta functions of SAUR gene family are largely ambiguous, while both AUX/IAA and GH3 genes are analyzed to mediate negative feedback on auxin response. SAUR genes encode small plant-specific proteins. SAUR gene products are highly unstable and transiently expressed in the tissue- and developmental-specific manners in response to auxin and various environmental stimuli. In the decades, molecular and genetic approaches to elucidate in planta functions of SAURs have been hampered by several factors such as the unstable molecular features and functional redundancy among them. However, a series of recent studies focusing on several subgroups of SAUR gene family made significant progress in our understanding of its biochemical and physiological functions. These works suggest that many SAUR proteins mainly regulate auxin-related cell expansion and auxin transport. In this review, the recent progress in SAUR research and prospects for crop improvement through its genetic manipulation are discussed.

Inorganic Phosphor Materials for White LED Display (백색 엘이디 디스플레이를 위한 형광체 재료 기술)

  • Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8:Eu^{2+}$, $MAlSiN_3:Eu^{2+}$ M-SiON(M=Ca, Sr, Ba), ${\alpha}/{\beta}-SiAlON:Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440-460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

Design of a MEMS sensor array for dam subsidence monitoring based on dual-sensor cooperative measurements

  • Tao, Tao;Yang, Jianfeng;Wei, Wei;Wozniak, Marcin;Scherer, Rafal;Damasevicius, Robertas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3554-3570
    • /
    • 2021
  • With the rapid development of the Chinese water project, the safety monitoring of dams is urgently needed. Many drawbacks exist in dams, such as high monitoring costs, a limited equipment service life, long-term monitoring difficulties. MEMS sensors have the advantages of low cost, high precision, easy installation, and simplicity, so they have broad application prospects in engineering measurements. This paper designs intelligent monitoring based on the collaborative measurement of dual MEMS sensors. The system first determines the endpoint coordinates of the sensor array by the coordinate transformation relationship in the monitoring system and then obtains the dam settlement according to the endpoint coordinates. Next, this paper proposes a dual-MEMS sensor collaborative measurement algorithm that builds a mathematical model of the dual-sensor measurement. The monitoring system realizes mutual compensation between sensor measurement data by calculating the motion constraint matrix between the two sensors. Compared with the single-sensor measurement, the dual-sensor measurement algorithm is more accurate and can improve the reliability of long-term monitoring data. Finally, the experimental results show that the dam subsidence monitoring system proposed in this paper fully meets the engineering monitoring accuracy needs, and the dual-sensor collaborative measurement system is more stable than the single-sensor monitoring system.

A Concise Review of Recent Application Progress and Future Prospects for Lignin as Biomass Utilization

  • Hong, Seo-Hwa;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.136-151
    • /
    • 2021
  • Biomass lignin, a waste produced during the paper and bio-ethanol production process, is a cheap material that is available in large quantities. Thus, the interest in the valorization of biomass lignin has been increasing in industrial and academic areas. Over the years, lignin has been predominantly burnt as fuel to run pulping plants. However, less than 2% of the available lignin has been utilized for producing specialty chemicals, such as dispersants, adhesives, surfactants, and other value-added products. The development of value-added lignin-derived co-products should help make second generation biorefineries and the paper industry more profitable by valorizing lignin. Another possible approach towards value-added applications is using lignin as a component in plastics. However, blending lignin with polymers is not simple because the polarity of lignin molecules results in strong self-interactions. Therefore, achieving in-depth insights on lignin characteristics and structure will help in accelerating the development of lignin-based products. Considering the multipurpose characteristics of lignin for producing value-added products, this review will shed light on the potential applications of lignin and lignin-based derivatives on polymeric composite production. Moreover, the challenges in lignin valorization will be addressed.