• Title/Summary/Keyword: Apple white rot

Search Result 47, Processing Time 0.025 seconds

Development of a 15-day Interval Spraying Program for Controlling Major Apple Diseases

  • Lee, Dong-Hyuck;Kim, Dae-Hee;Shin, Ho-Cheol;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • A fungicidal spray program for effective control of three major apple diseases in Korea (white rot, bitter rot, and Marssonina blotch) was developed. This was based on our previous studies showing that application of ergosterol biosynthesis inhibitors (EBIs) in early or mid-August can eradicate white rot infection in fruit and that some protective fungicides show after-infection activity against white rot. The basic spray program focused on control of white rot, the main target disease, and the fungicides were sprayed at 15-day intervals from petal fall to late August using fungicides that show after-infection and EBI activity. The basic spray program was modified over 4 successive years to improve control efficacy against bitter rot and Marssonina blotch, which sometimes cause as much damage as white rot. Modifications to the regime were made every year by replacing one fungicide in the basic program at a specific spraying time. Substitution of only one fungicide in the spray program, even early in the growing season, greatly influenced the final disease incidence at harvest. Applying this principle, a moderately efficient spray program for cv. Fuji that increased the spray interval from 10 to 15 days and thus reduced the number of sprays required per crop season was developed.

Identification of Differentially Up-regulated Genes in Apple with White Rot Disease

  • Kang, Yeo-Jin;Lee, Young Koung;Kim, In-Jung
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.530-537
    • /
    • 2019
  • Fuji, a major apple cultivar in Korea, is susceptible to white rot. Apple white rot disease appears on the stem and fruit; the development of which deteriorates fruit quality, resulting in decreases in farmers' income. Thus, it is necessary to characterize molecular markers related to apple white rot resistance. In this study, we screened for differentially expressed genes between uninfected apple fruits and those infected with Botryosphaeria dothidea, the fungal pathogen that causes white rot. Antimicrobial tests suggest that a gene expression involved in the synthesis of the substance inhibiting the growth of B. dothidea in apples was induced by pathogen infection. We identified seven transcripts induced by the infection. The seven transcripts were homologous to genes encoding a flavonoid glucosyltransferase, a metallothionein-like protein, a senescence-induced protein, a chitinase, a wound-induced protein, and proteins of unknown function. These genes have functions related to responses to environmental stresses, including pathogen infections. Our results can be useful for the development of molecular markers for early detection of the disease or for use in breeding white rotresistant cultivars.

After-infection Activity of Protective Fungicides against Apple White Rot

  • Lee, Dong-Hyuk;Kim, Dae-Hee;Woo, Hyun;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.166-173
    • /
    • 2007
  • In a trial to select suitable fungicides for developing a spray program that can control apple white rot effectively, after-infection activities in some protective fungicides were detected. Six fungicides, mancozeb, propineb, benomyl, folpet, azoxystrobin and iminoctadine-triacetate, which had been extensively used in apple orchards, were sprayed on 12-year-old apple trees (cv. Fuji) at 15-day intervals from late May to late July. Disease incidences and infection frequencies of the fruit bagged just before and soon after each spray were examined. When the infection frequency or disease incidence of the fruit bagged after each spraying of fungicide was significantly lower than those of the fruit bagged before spraying, the fungicides appeared to confer after-infection activity. The six fungicides showed diverse activities on white rot: folpet showed after-infection activity on disease development, iminoctadine-triacetate showed after-infection activity on infection, azoxystrobin showed after-infection activity on disease development and infection, and mancozeb, propineb and benomyl showed no distinct activity. The activity of a fungicide became much higher when it was sprayed alternately with other fungicide rather than successive spraying of the same fungicide. Analysis of the properties of these protective fungicides could lead to the development of a highly effective spray program against white rot.

Establishment of Fungicidal Spray Schedule for Effective Control of Apple White Rot 1. Guiding Principles for Selecting Protective Fungicides in Accordance with Apple Growing Season (사과 겹무늬썩음병의 효과적 방제를 위한 약제살포 체계의 수립 1. 사과의 생육시기별 보호살균제의 선택 원칙)

  • 정미혜;김대희;엄재열
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.284-291
    • /
    • 1994
  • In order to establish an appropriate spray schedule to reduce the infection, 11 kinds of chemicals were tested for their properties on the inhibition of spore germination at the surface of apple fruits and the duration of the inhibitory effect after spray of each chemical was examined from late June to early September with basically 10 day intervals. Actual control efficacy of each chemical by the 8 successive spray and the patterns of waterborne spore dispersals during that periods were also examined. Combining those results with the meteorological observation data, actual control efficacy of each chemical in the given periods could be estimated. It was revealed that folpet, Brodeaux mixture, mancozeb, oxine copper and imminoctadine-triacetate could be used at any time during the possible infection periods. Captan and dithianon could also be used except the rainy season due to the short duration of inhibitory efficacy against spore germination under heavy rain. However, the usefulness of propineb, benomyl and chlorothalonil against the apple white rot could not be demonstrated in this experiment. Thiram, even though has not been used for apple white rot, can also be used before or after the rainy season to control not only white rot but also alternaria blotch.

  • PDF

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Survey on the Occurrence of Apple Diseases in Korea from 1992 to 2000

  • Lee, Dong-Hyuk;Lee, Soon-Won;Choi, Kyung-Hee;Kim, Dong-A;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.375-380
    • /
    • 2006
  • In the survey from 1992 to 2000, twenty-eight parasitic diseases were observed in major apple producing areas in Korea. The predominant apple diseases were white rot(Botryosphaeria dothidea), Marssonina blotch(Marssonina mali), Valsa canker(Valsa ceratosperma), Alternaria leaf spot(Alternaria mali), and bitter rot(Collectotrichum gloeosporioides and C. acutatum). Apple scab that reappeared in 1990 after disappearance for 15 years was disappeared again since 1997. A viroid disease(caused by apple scar skin viroid) was newly found in this survey. The five diseases, fire blight(Erwinia amylovora), black rot(Botryosphaeria obtusa), scab(Cladosporium carpophilum), Monochaetia twig blight(Monochaetia sp.), and brown leaf spot(Hendersonia mali), which had once described in 1928 but no further reports on their occurrence, were not found in this survey. However, blossom blight(Monilinia mali), brown rot(Monilinia fructigena), and pink rot(Trichothecium roseum), which did not occur on apple after mid 1970s, were found in this survey.

Reducing Fungicidal Spray Frequency for Major Apple Diseases by Increasing the Spray Interval from 15 to 25 days

  • Lee, Dong-Hyuck;Shin, Ho-Cheol;Cho, Rae-Hong;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.270-279
    • /
    • 2009
  • During the course of a study to develop a spraying program at 15-day spray intervals, two important findings were identified allowing for further reduction of spray frequency by increasing the spray interval. In evaluating the contribution of fungicides from a 15-day spray interval program, control of white rot, which is of prime importance in Korea, was not affected, in spite of the extended spray interval caused by omitting the fungicides during the season. In another experiment assessing the duration of the protective activities of several key fungicides used in the 15-day spray interval program, infection control was maintained for almost 30 days for some fungicide. Based on these two findings, a basic spraying program with a 25-day spray interval was developed. This program was modified for four successive years to improve the control efficacy against bitter rot and Marssonina blotch, which sometimes causes as much damage as white rot.

An Infection Model of Apple White Rot Based on Conidial Germination and Appressorium Formation of Botryosphaeria dothidea

  • Kim, Ki-Woo;Kim, Kyu-Rang;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.322-327
    • /
    • 2005
  • Regression models for determining infection periods of apple white rot were developed based on conidial germination and appressorium formation of Botryosphaeria dothidea. A total of 120 apple fruits were inoculated with the fungal conidial suspension and subjected to 6 temperatures and 10 wetness periods. Conidia germinated and produced appressoria, exhibiting swollen tips of germ tubes on the fruit surface. Conidial germination (G) increased with temperature (T) and wetness period (W), and was described as $G=-89.273+7.649T+7.056W-0.109T^{2}-0.085W^{2}-0.066TW(R^{2}=0.75)$. Less than 2 hr of wetness period were enough for conidia to germinate at 25 to $30^{\circ}C$. Effects of temperature and wetness period on appressorium formation (A) could be explained as $A=-1.540-2.375W+0.045W^{2}+0.213TW(R^{2}=0.77)$. The relationship between conidial germination and appressorium formation ($A_g$) was described as$A_g=0.381-0.227G+0.005G^{2}(R^{2}=0.67)$, suggesting that conidial germination may have to reach approximately $43.7\%$ to initiate appressorium formation. Using the regression equation for conidial germination and the criterion of $43.7\%$ conidial germination, an infection model was developed to determine infection periods based on temperature and wetness period. The infection model with the criterion of $43.7\%$ conidial germination was apparently more conservative than the appressorium formation model in determining possibility of apple infection. The infection model seemed sensitive to variable weather conditions, suggesting possible use of the model for timing fungicide sprays to control white rot of apples in practice.

Biological Control of White Rot in Apple Using Bacillus spp. (Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제)

  • Ha-Kyoung Lee;Jong-Hwan Shin;Seong-Chan Lee;You-Kyoung Han
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.390-398
    • /
    • 2023
  • Apple white rot, caused by Botryosphaeria dothidea, is one of the important diseases in Korea. B. dothidea can cause pre- and postharvest decay on apple fruit as well as canker and dieback of apple trees. In this study, we isolated bacteria from the trunk of apple trees and tested their antagonistic activity against B. dothidea. Five bacterial isolates (23-168, 23-169, 23-170, 23-172, and 23-173) were selected that were most effective at inhibiting the mycelial growth of the pathogens. The isolate 23-172 was identified as Bacillus amyloliquefaciens and four isolates 23-168, 23-169, 23-170, and 23-173 were identified as Bacillus velezensis by RNA polymerase beta subunit (rpoB) and DNA gyraseA subunit (gyrA) gene sequencing. All isolates showed strong antagonistic activity against B. dothidiea as well as Colletotrichum fructicola and Diaporthe eres. All isolates exhibited cellulolytic, proteolytic and phosphate solubilizing activities. In particular, two isolates 23-168, 23-169 were shown to significantly reduce the size of white rot lesions in pretreated apple fruits. These results will provide the basis for the development of a fungicide alternative for the control of white rot of apple.

사과 겹무늬썩음병균에 대한 Bacillus sp. SS279의 항진균활성과 생물학적 방제

  • Kim, Sam-Sun;Joo, Gil-Jae;Uhm, Jae-Youl;Kim, Young-Jae;Rhee, In-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.527-533
    • /
    • 1997
  • From apple skin, we isolated a bacterial strain which strongly inhibited the growth of apple white rot fungus, Botryosphaeria dothidea. The isolated strain, designated as SS279, was identified to be the genus Bacillus. The antifungal activity of Bacillus sp. SS279 was found in the culture filtrate. The production of antifungal substances occurred during logarithmic phase and was the highest when cultures reached the stationary growth phase. The optimum ranges of temperature and pH for its production were 25-30$\circ$C and 4.5-9.0, respectively. The culture filtrate of Bacillus sp. SS279 exhibited a strong inhibitory effect on the spore germination and germ tube elongation of B. dothidea. Autoclaved culture filtrate of Bacillus sp. SS279 showed only a slight decrease in antifungal activity, indicating that the Bacillus sp. SS279 produce heat-stable antifungal substances. In in vivo bioassay, Bacillus sp. SS279 also showed antagonistic activity against apple white rot caused by B. dothidea.

  • PDF