• Title/Summary/Keyword: Apple Images

Search Result 45, Processing Time 0.022 seconds

Development of a Fruit Grader using Black/White Image Processing System(I) - Determining the Size and Coloration - (흑백영상처리장치를 이용한 과실선별기 개발에 관한 연구(I) - 크기 및 색택 판정 -)

  • Noh, S.H.;Lee, J.W.;Lee, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.354-362
    • /
    • 1992
  • This study was intended to examine feasibility of sizing and color grading of Fuji apple with black/white image processing system, to develop a device with which the whole surface of an apple could be captured by one camera, and to develop an algorithm for a high speed sorting. The results are summarized as follows : 1. The black/white image processing system used in this study showed a maximum error of 1.3% in area measurement with a reference figure while the focusing point of camera and location of the reference figure were changed within a certain range. 2. As the result of evaluating four automatic image segmentation algorithms with apple images, Histogram Clustering Method was the best in terms of computation time and accuracy. 3. The fast algorithm for analyzing size and coloration of apple was developed. 4. The whole surface of an apple could be captured in an image frame with two mirrors installed on the both sides of the sample. The total area of the image representing the whole surface showed a correlation of 0.995 with the weight of apple. 5. The gray level when a particular band pass filter was mounted on the camera showed high correlation with 'L' and 'a' values of Hunt color scale and could represent the coloration of apple.

  • PDF

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

Study on Bruise Detection of 'Fuji' apple using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 '후지' 사과의 멍 검출에 관한 연구)

  • Cho, Byoung-Kwan;Baek, In-Suck;Lee, Nam-Geun;Mo, Chang-Yeun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.484-490
    • /
    • 2011
  • Defects exist underneath the fruit skin are not easily discernable by using conventional color imaging technique in the visible wavelength ranges. Development of sensitive detection methods for the defects is necessary to ensure accurate quality sorting of fruits. Hyperspectral imaging techniques, which combine the features of image and spectroscopy to acquire spatial and spectral information simultaneously, have demonstrated good potentials for identifying and detecting anomalies on biological substances. In this study, a high spatial resolution hyperspectral reflectance technique was presented as a tool for detecting bruises on apple. The two-band ratio (494 nm / 952 nm) and simple threshold methods were applied to investigate the feasibility of discriminating the bruises from sound tissue of apple. The pixel wise accuracy of the discrimination was 74%. The resultant images processed with selected wavebands and morphologic algorithm distinctively showed the early stages of bruises on apple which were not discernable by naked eyes as well as a conventional color camera. Results demonstrated good potential of the hyperspectral reflectance imaging for detection of bruises on apple.

A Study on Discrimination of Watercore Apple using Transmitted Light and Effects of various Factors (투과광을 이용한 밀병 사과의 판별 가능성 및 영향인자 조사)

  • 손미령;정경원;조래광
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.357-361
    • /
    • 2000
  • Watercore influences storage and distribution industry of fruit. Therefore, the technique for nondestructive discrimination of watercore fruit is needed. This work reports about the possibility of watercore discrimination of ante using transmitted light, and the effects of various factors. CCD camera was used to capone images of each apple fruit. An excess watercore apples were higher light transmission score than little watercore apples. The accuracy fur discrimination of watercore apple was about 70% using transmitted light. Peel thickness, anthocyanin layer thickness and density of apple affected the light transmission. Apples having thin peel, thin pigment layer and low density tended to high transmitted light score. Apples of good color degree were more probability of existence watercore than ones of bad color degree. But color distribution of apple peel was not correlated with watercore.

  • PDF

Superpixel-based Apple Leaf Disease Classification using Convolutional Neural Network (합성곱 신경망을 이용하는 수퍼픽셀 기반 사과잎 병충해의 분류)

  • Kim, Manbae;Choi, Changyeol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.208-217
    • /
    • 2020
  • The classification of plant diseases by images captured by a camera sensor has been studied over past decades. A method that has gained much interest is to use image segmentation, from which statistical features are derived and analyzed by machine learning. Recently, deep learning has been adopted in this area. However, image segmentation is still a difficult task to achieve stable performance due to a variety of environmental variations. The end-to-end learning in neural network has a demerit that train images may be different from real images acquired in outdoor fields. To solve these problems, we propose superpixel-based disease classification method using end-to-end CNN (convolutional neural network) learning. Based on experiments performed on PlantVillage apple images, the classification accuracy is 98.29% and 92.43% for full-image and superpixel. As well, the multivariate F1-score is (0.98, 0.93). Therefore we validate that the method of using superpixel is comparable to that of full-image.

Improved Deep Residual Network for Apple Leaf Disease Identification

  • Zhou, Changjian;Xing, Jinge
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1115-1126
    • /
    • 2021
  • Plant disease is one of the most irritating problems for agriculture growers. Thus, timely detection of plant diseases is of high importance to practical value, and corresponding measures can be taken at the early stage of plant diseases. Therefore, numerous researchers have made unremitting efforts in plant disease identification. However, this problem was not solved effectively until the development of artificial intelligence and big data technologies, especially the wide application of deep learning models in different fields. Since the symptoms of plant diseases mainly appear visually on leaves, computer vision and machine learning technologies are effective and rapid methods for identifying various kinds of plant diseases. As one of the fruits with the highest nutritional value, apple production directly affects the quality of life, and it is important to prevent disease intrusion in advance for yield and taste. In this study, an improved deep residual network is proposed for apple leaf disease identification in a novel way, a global residual connection is added to the original residual network, and the local residual connection architecture is optimized. Including that 1,977 apple leaf disease images with three categories that are collected in this study, experimental results show that the proposed method has achieved 98.74% top-1 accuracy on the test set, outperforming the existing state-of-the-art models in apple leaf disease identification tasks, and proving the effectiveness of the proposed method.

A Simple Multispectral Imaging Algorithm for Detection of Defects on Red Delicious Apples

  • Lee, Hoyoung;Yang, Chun-Chieh;Kim, Moon S.;Lim, Jongguk;Cho, Byoung-Kwan;Lefcourt, Alan;Chao, Kuanglin;Everard, Colm D.
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • Purpose: A multispectral algorithm for detection and differentiation of defective (defects on apple skin) and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used to capture hyperspectral images of apples moving approximately 4 apples per second on a conveyor belt. The detection algorithm included an apple segmentation method and a threshold function, and was developed using three wavebands at 676 nm, 714 nm and 779 nm. The algorithm was executed on line-by-line image analysis, simulating online real-time line-scan imaging inspection during fruit processing. Results: The rapid multispectral algorithm detected over 95% of defective apples and 91% of normal apples investigated. Conclusions: The multispectral defect detection algorithm can potentially be used in commercial apple processing lines.

Integration of Multi-scale CAM and Attention for Weakly Supervised Defects Localization on Surface Defective Apple

  • Nguyen Bui Ngoc Han;Ju Hwan Lee;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.45-59
    • /
    • 2023
  • Weakly supervised object localization (WSOL) is a task of localizing an object in an image using only image-level labels. Previous studies have followed the conventional class activation mapping (CAM) pipeline. However, we reveal the current CAM approach suffers from problems which cause original CAM could not capture the complete defects features. This work utilizes a convolutional neural network (CNN) pretrained on image-level labels to generate class activation maps in a multi-scale manner to highlight discriminative regions. Additionally, a vision transformer (ViT) pretrained was treated to produce multi-head attention maps as an auxiliary detector. By integrating the CNN-based CAMs and attention maps, our approach localizes defective regions without requiring bounding box or pixel-level supervision during training. We evaluate our approach on a dataset of apple images with only image-level labels of defect categories. Experiments demonstrate our proposed method aligns with several Object Detection models performance, hold a promise for improving localization.

Sharpness Enhancement of Tooth X-ray Images Through Elimination of Complicated Background (복잡한 배경 제거를 통한 치아 X-ray 영상의 선예도 개선)

  • Kun-Woo Na;Keun-Ho Rew
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • To remove unnecessary background from tooth X-ray images and enhance the sharpness of tooth and gum images, image processing techniques including contrast adjustment and histogram equalization are used. The introduction of two methods for detecting the boundary of the tooth and gum region and separating the tooth and gum from the background. In both cases, the background of the tooth X-ray images could be removed as a result, improving the quality of the images. The proposed method improves MTF (Modulation Transfer Function), an image performance indicator, as a result of measuring MTF. The original image's spatial frequency ranged from 4.73 to 11.40 lp/mm at the 10% response, whereas the proposed image's spatial frequency ranged from 10.90 to 11.85 lp/mm, giving uniformly enhanced results. In contrast, tooth and gums could not be completely separated from the background using Apple's Lift subject from background function.

A Study on Drift Phenomenon of Trained ML (학습된 머신러닝의 표류 현상에 관한 고찰)

  • Shin, ByeongChun;Cha, YoonSeok;Kim, Chaeyun;Cha, ByungRae
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.61-69
    • /
    • 2022
  • In the learned machine learning, the performance of machine learning degrades at the same time as drift occurs in terms of learning models and learning data over time. As a solution to this problem, I would like to propose the concept and evaluation method of ML drift to determine the re-learning period of machine learning. An XAI test and an XAI test of an apple image were performed according to strawberry and clarity. In the case of strawberries, the change in the XAI analysis of ML models according to the clarity value was insignificant, and in the case of XAI of apple image, apples normally classified objects and heat map areas, but in the case of apple flowers and buds, the results were insignificant compared to strawberries and apples. This is expected to be caused by the lack of learning images of apple flowers and buds, and more apple flowers and buds will be studied and tested in the future.