• Title/Summary/Keyword: Apparent Metabolisable Energy

Search Result 12, Processing Time 0.015 seconds

Effects of Nutrient Specifications and Xylanase Plus Phytase Supplementation of Wheat-based Diets on Growth Performance and Carcass Traits of Broiler Chicks

  • Selle, P.H.;Huang, K.H.;Muir, W.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1501-1509
    • /
    • 2003
  • The simultaneous addition of xylanase (5,600 EXU/kg) and phytase (500 FTU/kg) feed enzymes to wheat-based broiler diets was investigated. Starter, grower and finisher diets, with three tiers of nutrient specifications, were fed to 1,440 broiler chicks kept on deep litter from 1-42 days post-hatch, without and with xylanase plus phytase, to determine the effects of diet type and enzyme supplementation on growth performance. The nutrient specifications of type A diets were standard; energy density and protein/amino acid levels were reduced on a least-cost basis to formulate type B diets and further reduced to type C diets. Phosphorus (P) and calcium (Ca) levels were adjusted in supplemented diets. From 1-42 days post-hatch, diet type significantly influenced growth performance. Birds on type C diets had lower growth rates (2,429 vs. 2,631 g/bird; p<0.001), higher feed intakes (4,753 vs. 4,534 g/bird; p<0.005) and less efficient feed conversion (1.96 vs. 1.72; p<0.001) than birds offered type A diets. Enzyme supplementation increased growth rates by 3.2% (2,580 vs. 2,501 g/bird; p<0.005) and improved feed efficiency by 2.7% (1.80 vs. 1.85; p<0.05) over the entire feeding period. There were no interactions between diet type and enzyme supplementation. At 21 days, 5 out of 30 birds per pen were transferred to cages to ascertain treatment effect on apparent metabolisable energy (AME) and nitrogen (N) retention. Xylanase plus phytase enhanced AME (13.48 to 13.91 MJ/kg DM; p<0.001) and N retention (56.3 to 59.7%; p<0.005). Carcass and breast weights of the caged birds were determined following commercial processing. Diet type significantly influenced breast weight, carcass weight and yield. Birds offered Type A diets, in comparison to Type C diets, supported heavier breast (467 vs. 424 g; p<0.001) and carcass weights (1,868 vs. 1,699 g; p<0.001) with superior carcass yields (71.8 vs. 70.6%; p<0.005). Enzyme addition increased carcass weight by 3.9% (1,752 vs. 1,821 g; p<0.005) and breast weight by 5.8% (431 vs. 456 g; p<0.01) without influencing yields. Feed ingredient costs per kg live weight gain and per kg carcass weight indicated that enzyme addition was economically feasible, where supplementation of Type A diets generated the most effective results. Importantly, soluble and total non-starch polysaccharide and phytate contents of the wheat used were typical by local standards. This study confirms the potential of supplementing wheat-based broiler diets with xylanase plus phytase but further investigations are required to define the most appropriate inclusion rates and dietary nutrient specifications in this context.

Influence of Lighting Schedule and Nutrient Density in Broiler Chickens: Effect on Growth Performance, Carcass Traits and Meat Quality

  • Li, Wen-Bin;Guo, Yan-Li;Chen, Ji-Lan;Wang, Rong;He, Yao;Su, Dong-Ge
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1510-1518
    • /
    • 2010
  • The study was conducted to evaluate the effect of lighting schedule and nutrient density on growth performance, carcass traits and meat quality of broiler chickens. A total of 576 day old Arbor Acre male chickens was used with a $4{\times}2$ factorial arrangement. The four lighting schedules were continuous (23 L:1 D, CL), 20 L:4 D (12 L:2 D:8 L:2 D), 16 L:8 D (12 L:3 D:2 L:3 D: 2 L:2 D) and 12 L:12 D (9 L:3 D:1 L:3 D:1 L:3 D:1 L:3 D) and provided by incandescent bulbs. The two nutrient densities were high (H, starter diet: 13.39 MJ/kg apparent metabolisable energy (AME), 23.00% crude protein (CP); finisher diet: 13.39 MJ AME/kg, 19.70% CP) and low energy and protein level (L, starter diet: 12.03 MJ AME/kg, 20.80% CP; finisher diet: 12.14 MJ AME/kg, 18.30% CP). Houses with dark curtains and solid sidewalls were used. Chickens were randomly allocated to the 8 treatments with each treatment comprising 6 replicates of 12 chickens. Feed and water were available ad libitum. Lighting schedules showed no difference (p>0.05) in growth performance at the end of the experiment. 12 L:12 D significantly reduced (p<0.05) the concentration of malondialdehyde (MDA) compared to 23 L:1 D treatment. Intermittent lighting (IL) schedules produced higher protein content (p<0.001) in breast meat. Birds on high density diets had higher body weight (BW), feed intake (FI) (p<0.001), and feed conversion ratio (FCR) (p<0.001) throughout the experiment with the exception of 36 to 42 d. High nutrient density increased (p<0.05) abdominal fat, decreased (p<0.05) the moisture loss of meat, and reduced percentage of wings and legs. There was a significant lighting schedule${\times}$diet interaction (p<0.001) on FCR for days 8 to 14 and 15 to 21. Results indicated that IL can give similar growth performance in comparison with CL, meanwhile with positive effects on meat quality by increasing protein content and decreasing the concentration of MDA. High nutrient density resulted in greater growth performance.