• Title/Summary/Keyword: Apparent Activation Energy

Search Result 217, Processing Time 0.029 seconds

A Study on the Weight Reduction of PET Microfibre Treated with Sodium Diethylene Glycolate (SDEG) (Sodium Diethylene Glycolate (SDEG)에 의한 Polyester 신합섬직물의 감량가공에 관한 연구)

  • Lee, Joo-Hyoung;Kim, Sam-Soo;Huh, Man-Woo;Yoon, Jong-Ho;Cho, Yong-Suk
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.36-51
    • /
    • 1996
  • In order to investigate the degradation behavior of PET fabrics, sodium diethylene glycolate (SDEG)-diethylene glycol (DEG) solutions were prepared and PET fabrics were treated in the solution. The dissolution rate constant and apparent activation energy of the PET fabrics were calculated by Eyring's and Arrhenius's equation respectively and measured dyeing properties, moisture and antistatic properties. Then compared SDEG-treated fabrics with NaOH-treated. The results were as follows; 1. PET fabrics decreased their weight in SDEG-DEG solution, and the decreasing rate showed a linear relationship to the treating time at constant temperature and concentration of SDEG-DEG solution. 2. The dissolution rate constant showed a linear relationship to the concentration of SDEGDEG solution and an exponential relationship to treating temperature. 3. Apparent activation energy of dissolution was 23.45 kcal/mol. 4. The K/S values and the ΔL values of fabrics treated with SDEG-DEG solution are higher and lower respectively than fabrics treated with NaOH. 5. SDEG-DEG solution treatment improved fabric's moisture regain and it reached almost maximum at about 40% weight loss. 6. In the both reagent the light, wet and sublimation fastness of fabrics are similar. 7. SDEG-DEG solution gave more electrical discharge effect to the fabrics than that of NaOH. 8. NaOH treated PET microfiber have crater-like surface, while SDEG-DEG solution give bathochromic effect to the PET microfiber because which has wrinkles on the surface.

  • PDF

Thermal Analysis of Mg2Cu Hydride (Mg2 hydride의 열분석)

  • Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The desorption kinetics of $Mg_2Cu$ hydride were studied by thermal analysis technique in order to study desorption behavior and to relate thermal desorpton spectra to occuption site of hydrogen. It is suggested that a continuous ${\alpha}/{\beta}$ interface boundary is formed at the initial absorption stage. And the desorption kinetics were analysed by the theoretical equation which was derived on the basis of continous moving boundary model. The number of thermal desorption peak corresponds to the occupation sites of hydrogen. The apparent activation energy for the desorption of $Mg_2Cu$ hydride is 91 KJ/mol.

  • PDF

Rheological Properties of Chestnut Starch Solution (밤전분 수용액의 리올로지 특성)

  • Park, Hong-Hyun;Kim, Sung-Kon;Pyun, Yu-Ryang;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.815-819
    • /
    • 1989
  • Rheological properties of chestnut starch suspensions (3 and 4%, db) and gelatinized starch (4%, db) were investigated with a capillary and rotational viscometer, respectively. Starch suspensions had no yield stress and showed dilatant flow behavior in the temperature ranges of $30-65^{\circ}C$. However, starch suspension showed pseudoplastic flow behavior at $70^{\circ}C\; and\;above\; 65^{\circ}C$ for 3 and 4% concentration, respectively Flow activation energy below $50^{\circ}C$ was 0.56 kcal/mole but increased to 51.9-80.8 kcal/mole at $60-70^{\circ}C$. The behavior of gelatinized starch (4%) was pseudoplastic regardless of heating temperature $(65-80^{\circ}C)$ and time (15-60 min). The apparent viscosity of the starch remained constant after heating at $80^{\circ}C$ for 45 min. The swelling power and log apparent viscosity showed similar pattern. The activation energy of the apparent viscosity of the geletinized starch at $70-80^{\circ}C$ was 13.09kcal/mole. The apparent viscosity of thermal-gelatinized $(90^{\circ}C)$ starch was lower than that of 15 psi-gelatinized starch.

  • PDF

A study on the creep characteristic of AZ31 Mg alloy at below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘 합금 크리이프 특성에 관한 연구)

  • An, Jung-Oh;Kang, Dae-Min
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.43-48
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined over the temperature range below 0.5Tm and stress range of 109~187MPa, respectively, in order to investigate the creep behavior. AZ31 Magnesium alloy identify the activation energy for creep deformation and the stress dependence to creep rate at below 0.5Tm, and then investigate the mechanism for creep deformation and creep rupture life of AZ31 Magnesium alloy.

  • PDF

Thermal Kinetics of Color Changes of Purple Sweet Potato Anthocyanin Pigment (자색고구마 Anthocyanin 색소의 가열에 대한 속도론적 연구)

  • Lee, Lan-Sook;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.497-501
    • /
    • 1997
  • Kinetic parameters on heat-induced color changes of anthocyanin pigment from purple sweet potato were determined in the temperature range of $121{\sim}141^{\circ}C$. Color change determined by a browning index $(A_{532}\;nm/A_{420}\;nm)$ followed second order reaction kinetics. Activation energy values of purple sweet potato pigment solutions of pH 2.0, 3.0, 4.0 and 5.0 were 69.57, 76.68, 81.07 and 92.98 kJ/mol, respectively, indicating that temperature dependency of the reaction increased with pH. Apparent kinetic compensation effect between preex-ponential factor and activation energy value was observed.

  • PDF

High Temperature Creep Strength of Mg-Nd-Zr-Zn Alloy in Sand Castings (사형주조한 Mg-Nd-Zr-Zn합금의 고온 크리이프강도)

  • Kang, Dae-Min;Park, Kyung-Do;Park, Ji-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.83-88
    • /
    • 2011
  • Magnesium alloys have been focussed for the applications for lightweight of vehicle and electronics due to their high strength, low specific density and good damping capacity. This paper deals with the creep strength of Mg-Nd-Zr-Zn alloy. For the alloy, pure magnesium(99.9%) was melt with atmosphere of $0.3%SF_6$ and $25%CO_2$. After melting, 0.3% of zinc was inserted to stir for 10min at elevated temperature of $770^{\circ}C$. Master alloys of Mg-15%Nd and Mg-15%Zr were stirred in furnace. The creep tests were performed to obtain creep rate and rupture in the temperature range of 200 to $220^{\circ}C$ and 280 to $310^{\circ}C$ at an applied stress of 156 to 172MPa and 78 to 94MPa, respectively. The deformation mechanism was predicted dislocation climb from measured apparent activation energy and stress exponent. Also the increaser the temperature and stress the lower the stress exponent and activation energy. Finally, LMP parameter gives good information for the predicted creep rupture life.

Growth Kinetics of Intermetallic Compound on Sn-3.5Ag/Cu, Ni Pad Solder Joint with Isothermal Aging (등온시효에 따른 Sn-3.5Ag 솔더 접합부의 금속간 화합물 성장에 관한 연구)

  • 이인영;이창배;정승부;서창제
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.97-102
    • /
    • 2002
  • The growth kinetics of intermetallic compound layers formed between the eutectic Sn-3.5Ag solder and the Cu and Ni/Cu pad by solid stateisothermal aging were examined. The interfacial reaction between the eutectic Sn-3.5Ag solder and the Cu and Ni/Cu pad was investigated at 70, 120, 150, $170^{\circ}C$ for various times. The intermetallic compound layer was composed of two phase: $Cu_6Sn_5$(${\varepsilon}-phase$) adjacent to the solder and $Cu_6Sn_5$(${\varepsilon}-phase$) adjacent to the copper and on solder/Ni pad the intermetallic compound layer was $Ni_3Sn_4$. Because the values of time exponent(n) have approximately 0.5, the layer growth of the intermetallic compound was mainly controlled by volume diffusion over the temperature range studied. The apparent activation energy for layer growth of total Cu-Sn($Cu_6Sn_5 + Cu_6Sn$), $Cu_6Sn_5$, $Cu_3Sn$ and $Ni_3Sn_4$ intermetallic compound were 64.82kJ/mol, 48.53kJ/mol, 89.06kJ/mol and 71.08kJ/mol, respectively.

A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy (AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구)

  • Kang, D.M.;An, J.O.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

The Characteristics of Creep for Dispersion Strengthened Copper (분산강화 동합금의 Creep 특성)

  • Park, K.C.;Kim, G.H.;Mun, J.Y.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.220-227
    • /
    • 2001
  • The static creep behaviors of dispersion strengthened copper GlidCop were investigated over the temperature range of $650{\sim}690^{\circ}C$ (0.7Tm) and the stress range of 40~55 MPa (4.077~5.61 $kg/mm^2$). The stress exponents for the static creep deformation of this alloy was 8.42, 9.01, 9.25, 9.66 at the temperature of 690, 677, 663, and $650^{\circ}C$, respectively. The stress exponent, (n) increased with decreasing the temperature and became dose to 10. The apparent activation energy for the static creep deformation, (Q) was 374.79, 368.06, 361.83, and 357.61 kg/mole for the stress of 40, 45, 50, and 55 MPa, respectively. The activation energy (Q) decreased with increasing the stress and was higher than that of self diffusion of Cu in the dispersion strengthened copper. In results, it can be concluded that the static creep deformation for dispersion strengthened copper was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller parameter (P) for the crept specimens for dispersion strengthened copper under the static creep conditions was obtained as P=(T+460)(logtr+23). The failure plane observed for SEM slightly showed up transgranular at that experimental range, however, universally it was dominated by characteristic of the intergranular fracture.

  • PDF

Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

  • Kim, Chul-Joo;Yoon, Ho-Sung;Chung, Kyung Woo;Lee, Jin-Young;Kim, Sung-Don;Shin, Shun Myung;Kim, Hyung-Seop;Cho, Jong-Tae;Kim, Ji-Hye;Lee, Eun-Ji;Lee, Se-Il;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid ($H_2SO_4$) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of $H_2SO_4$ was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol $H_2SO_4$, and the effect of temperatures was investigated under the condition of 30 to $80^{\circ}C$. As a result, praseodymium oxide ($Pr_6O_{11}$) existing in the slag was completely converted into praseodymium sulfate ($Pr_2(SO_4)_3{\cdot}8H_2O$) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be $9.195kJmol^{-1}$. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be $19.106kJmol^{-1}$. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.