• 제목/요약/키워드: Apoptotic pathway

검색결과 547건 처리시간 0.023초

Molecular Mechanisms of Apoptosis and Roles in Cancer Development and Treatment

  • Goldar, Samira;Khaniani, Mahmoud Shekari;Derakhshan, Sima Mansoori;Baradaran, Behzad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2129-2144
    • /
    • 2015
  • Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.

Cytotoxic Effect of Triglycerides via Apoptotic Caspase Pathway in Immune and Non-immune Cell Lines

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.66-74
    • /
    • 2019
  • Hyperlipidemia is defined as conditions of the accumulation of lipids such as free fatty acids (FFA), triglyceride (TG), cholesterol and/or phospholipid in the bloodstream. Hyperlipidemia can cause lipid accumulation in non-adipose tissue, which is lipid-cytotoxic effects in many tissues and mediates cell dysfunction, inflammation or programmed cell death (PCD). TG is considered to be a major cause of atherosclerosis through inflammatory necrosis of vascular endothelial cells. Recently, TG have also been shown to exhibit lipid-cytotoxicity and induce PCD. Therefore, we investigated the effect of TG on the cytotoxic effect of various cell types. When exposed to TG, the cell viability of U937 monocytes and Jurkat T lymphocytes, as well as the cell viability of MCF-7, a non-immune cell, decreased in time- and dose-dependent manner. In U937 cells and Jurkat cells, caspase-9, an intrinsic apoptotic caspase, and caspase-8, an extrinsic apoptotic caspase, were increased by exposure to TG. However, in TG-treated MCF-7 cells, caspase-8 activity increased only without caspase-9 activity. In addition, the reduction of cell viability by TG was recovered when all three cell lines were treated with pan-caspase inhibitor. These results suggest that activation of apoptotic caspases by TG causes lipotoxic effect and decreases cell viability.

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.

Inhibitory Effect of Kaempferol on Apoptosis Induced by Phorbol Ester via the Reduction of ROS in Normal Human Dermal Fibroblast

  • Park, Su-Ji;Lee, Sei-Jung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2020년도 정기학술대회 발표논문집
    • /
    • pp.219-219
    • /
    • 2020
  • Kaempferol (3,4',5,7-tetrahydroxyflavone), a flavonoid found in beans, broccoli, garlic, etc., has been used in natural medicine as an anti-inflammatory and antioxidant. This experiment was carried out to evaluate the anti-apoptotic effect of kaempferol in 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated Normal Human Dermal Fibroblast (NHDF). Kaempferol inhibited the production of intracellular Reactive Oxygen Species (ROS) induced by TPA in NHDF. Kaempferol significantly blocks the phosphorylation of extracellular signal-regulated kinase responsible for the activation of nuclear factor-kappa B. In addition, kaempferol significantly attenuated the expression of Bax and cleaved caspase-3 as regulated by the phosphorylation of nuclear factor-kappa B during its blockage of TPA-induced apoptotic cell death. These findings suggest that kaempferol protects the apoptotic signaling pathway induced by TPA through modulating intracellular ROS in NHDF.

  • PDF

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

CHOP Deficiency Ameliorates ERK5 Inhibition-Mediated Exacerbation of Streptozotocin-Induced Hyperglycemia and Pancreatic β-Cell Apoptosis

  • Nam, Dae-Hwan;Han, Jung-Hwa;Lim, Jae Hyang;Park, Kwon Moo;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.457-465
    • /
    • 2017
  • Streptozotocin (STZ)-induced murine models of type 1 diabetes have been used to examine ER stress during pancreatic ${\beta}$-cell apoptosis, as this ER stress plays important roles in the pathogenesis and development of the disease. However, the mechanisms linking type 1 diabetes to the ER stress-modulating anti-diabetic signaling pathway remain to be addressed, though it was recently established that ERK5 (Extracellular-signal-regulated kinase 5) contributes to the pathogeneses of diabetic complications. This study was undertaken to explore the mechanism whereby ERK5 inhibition instigates pancreatic ${\beta}$-cell apoptosis via an ER stress-dependent signaling pathway. STZ-induced diabetic WT and CHOP deficient mice were i.p. injected every 2 days for 6 days under BIX02189 (a specific ERK5 inhibitor) treatment in order to evaluate the role of ERK5. Hyperglycemia was exacerbated by co-treating C57BL/6J mice with STZ and BIX02189 as compared with mice administered with STZ alone. In addition, immunoblotting data revealed that ERK5 inhibition activated the unfolded protein response pathway accompanying apoptotic events, such as, PARP-1 and caspase-3 cleavage. Interestingly, ERK5 inhibition-induced exacerbation of pancreatic ${\beta}$-cell apoptosis was inhibited in CHOP deficient mice. Moreover, transduction of adenovirus encoding an active mutant form of $MEK5{\alpha}$, an upstream kinase of ERK5, inhibited STZ-induced unfolded protein responses and ${\beta}$-cell apoptosis. These results suggest that ERK5 protects against STZ-induced pancreatic ${\beta}$-cell apoptosis and hyperglycemia by interrupting the ER stress-mediated apoptotic pathway.

Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer

  • Kang, Seong Hee;Bak, Dong-Ho;Chung, Byung Yeoup;Bai, Hyoung-Woo;Kang, Bo Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.413-422
    • /
    • 2020
  • Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a subcytotoxic dose of delphinidin (5 μM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.

Molecular Mechanisms of Protein Kinase C-induced Apoptosis in Prostate Cancer Cells

  • Gonzalez-Guerrico, Anatilde M.;Meshki, John;Xiao, Liqing;Benavides, Fernando;Conti, Claudio J.;Kazanietz, Marcelo G.
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.639-645
    • /
    • 2005
  • Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. $PKC{\delta}$, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of $PKC{\delta}$ totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical $PKC{\alpha}$ promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to $PKC{\varepsilon}$, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. $PKC{\delta}$ stimulates the release of $TNF{\alpha}$ from the plasma membrane, and blockade of $TNF{\alpha}$ secretion or $TNF{\alpha}$ receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.