• Title/Summary/Keyword: Apoptotic caspases

Search Result 152, Processing Time 0.023 seconds

TIMP-1 in the regulation of ECM and apoptosis

  • Liu, Xu-Wen;Jung, Ki-Kyung;Kim, Hyeong-Reh-Choi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.89-96
    • /
    • 2002
  • The importance of apoptosis in normal development and pathogenesis has been well recognized, and explosive progress towards dissecting its commitment step has been made during the past decade. Mitochondria, Apaf-1, caspase, and bcl-2 family members play central roles in the commitment step. However, it is still unclear how upstream cell survival pathways regulate apoptosis. It is also unknown whether the bcl-2 family members have any effect on the upstream survival pathways. We have demonstrated that the anti-apoptotic gene product bcl-2 greatly induces expression of the tissue inhibitor of metalloproteinase-1 (TIMP-1) in human breast epithelial cells. Surprisingly, we found that TIMP-1, like bcl-2, is a potent inhibitor of apoptosis induced by a variety of stimuli. Functional studies indicate that TIMP-1 inhibits a classical apoptotic pathway mediated by caspases, and that focal adhesion kinase (FAK)/Pl 3-kinase and mitogen activated protein kinase (MAPK) are critical for TIMP- 1 -mediated cell survival. We also showed specific association of TIMP-1 with the cell surface. Consistently, a 150-H)a surface protein was identified in MCF10A cells that specifically binds TIMP-1. Taken together, we hypothesize that TIMP-I binding on the cell surface induces a cell survival pathway that regulates the common apoptosis commitment step. The results of these studies will address a new paradigm in the regulation of apoptosis by an extracellular molecule TIMP-1, and also greatly enhance our understanding of TIMP-1's pleiotropic activity in many physiological and pathological processes. This information may also be useful in designing more rational therapeutic interventions aimed at modulating the anti-apoptotic activity of TIMP-1 .

  • PDF

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Eun Jung Ahn;Chul Hwan Kim;Jin-Woo Jeong;Buyng Su Hwang;Min-Jeong Seo;Kyung-Min Choi;Su Young Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

Atromentin-Induced Apoptosis in Human Leukemia U937 Cells

  • Kim, Jin-Hee;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.946-950
    • /
    • 2009
  • In the course of screening for apoptotic substances that induce apoptosis in human leukemia U937 cells, a fungal strain, F000487, which exhibits potent inducible activity, was selected. The active compound was purified from an ethyl acetate extract of the microorganism by Sep-pak $C_{18}$ column chromatography and HPLC, and was identified as atromentin by spectroscopic methods. This compound induced caspase-3 processing in human leukemia U937 cells. The caspase-3 and poly (ADP-ribose) polymerase (PARP) were induced by atromentin in a dose-dependent manner. Furthermore, DNA fragmentation was also induced by this compound in a dose-dependent manner. These results show that atromentin potently induces apoptosis in U937 cells and that atromentin-induced apoptosis is related to the selective activation of caspases.

Wild Carrot Oil Extract is Selectively Cytotoxic to Human Acute Myeloid Leukemia Cells

  • Tawil, Mirna;Bekdash, Amira;Mroueh, Mohammad;Daher, Costantine F.;Abi-Habib, Ralph J.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.761-767
    • /
    • 2015
  • Background: In this study, we used Daucus carota oil extract (DCOE) to target acute myeloid leukemia (AML) cells. All the AML cell lines tested were sensitive to the extract while peripheral mononuclear cells were not. Analysis of mechanism of cell death showed an increase in cells positive for annexinV and for active caspases, indicating that DCOE induces apoptotic cell death in AML. Inhibition of the MAPK pathway decreased sensitivity of AML cells to DCOE, indicating that cytotoxicity may be dependent on its activity. In conclusion, DCOE induces selective apoptosis in AML cells, possibly through a MAPK-dependent mechanism.

BIR Containing Proteins (BIRPs): More Than Just Cell Death Inhibitors

  • Yoo, Soon-Ji
    • Animal cells and systems
    • /
    • v.9 no.4
    • /
    • pp.181-190
    • /
    • 2005
  • BIRPs (BIR containing Proteins) which contain one to three BIR domains constitute a highly conserved family from yeast to human. BIR domains mediate the interaction of BIRPs with various other proteins. Some of the members acquire a Ring domain which acts as an E3 ubiquitin ligase. The first member of BIRPs identified in the baculovirus was found as an inhibitor of apoptosis and most of the family members in the other species have been recognized to have the same function which bind to and inhibit caspases, thereby suppresses apoptotic cell death. But an increasing number of evidences indicate that BIRPs are involved in various cellular events such as cell division, control of cell cycle, signal transduction, cell migration, innate immunity as well as regulation of apoptosis. In this review, we summarize the structural and functional features of the BIRPs, especially focus on the various functions of BIRPs unrelated to regulation of apoptosis by the recent findings.

Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells (Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과)

  • Kang, Hye-In;Kim, Jae-Yong;Cho, Hyun-Dong;Park, Kyung-Wuk;Kang, Jum-Soon;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1119-1125
    • /
    • 2010
  • To evaluate resveratrol as a prostate cancer preventive material, we investigated its anti-proliferative and apoptotic effects in RC-58T/h/SA#4 primary human prostate cancer cells. Resveratrol significantly decreased the number of viable RC-58T/h/SA#4 cells in a dose- and time-dependent manner. Resveratrol showed cytotoxicity against RC-58T/h/SA#4, LNCaP, PC-3 human prostate cancer cells with $IC_{50}$ values of 245, 320 and $340\;{\mu}M$, respectively. However the cytotoxic potential of resveratrol against normal RWPE-1 cells was lower ($IC_{50}=982\;{\mu}M$). Resveratrol induced cell death as evidenced by the increased formation of apoptotic bodies, nuclear condensation, sub-G1 phase, and DNA fragmentation. Resveratrol activated initiator caspases 8, and 9 as well as effector caspase 3 in a dose-dependent manner. Furthermore, the general caspase inhibitor z-VAD-fmk significantly inhibited resveratrol-induced apoptosis compared to cells without treatment. These results clearly indicate that resveratrol-induced apoptosis was dependent on caspase activation. Further, resveratrol modulated the down regulation of Bcl-2 (anti-apoptotic), and Bid. However, the level of Bax (pro-apoptotic) remained unchanged. These results suggest that resveratrol induced apoptosis in RC-58T/h/SA#4 cells via a mitochondrial-mediated caspase-dependent pathway, suggesting therapeutic potential against prostate cancer.

Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway (인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향)

  • Jin, Cheng-Yun;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1549-1557
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in many types of transformed cells; however, some human hepatocellular carcinoma cells are particularly resistant to the effects of TRAIL. Although genistein, a natural isoflavonoid phytoestrogen, has been shown to have pro-apoptotic activity against human cancer cell lines, little is known about the mechanism of genistein in terms of TRAIL-induced apoptosis. In the present study, it was investigated whether or not combined treatment with genistein and TRAIL synergistically induced apoptosis in Hep3B hepatocarcinoma cells. Results indicate that treatment with TRAIL in combination with nontoxic concentrations of genistein sensitized TRAIL-resistant Hep3B cells to TRAIL-induced apoptosis, which was associated with mitochondrial dysfunction. Further, the inhibition of p38 mitogen-activated protein kinase (MAPK) activation markedly decreased genistein and TRAIL-induced cell viability and apoptosis by enhanced truncation of Bid, increase of pro-apoptotic Bax, decrease of anti-apoptotic Bcl-2, and release of cytochrome c from mitochondria to cytoplasm. Activation of caspases and degradation of poly (ADP-ribose) polymerase induced by the combined treatment was also markedly increased by the inhibition of p38 MAPK, through the mitochondrial amplification step. In conclusion, our data suggest that genistein sensitizes TRAIL-induced-apoptosis via p38 MAPK-dependent pathway.

Apoptotic Cell Death of Human Leukemia U937 Cells by Essential Oil purified from Schisandrae Semen (오미자 종자 정유에 의한 인체백혈병 U937 세포의 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.249-255
    • /
    • 2015
  • Schisandrae fructus [Schizandra chinensis (Turcz.) Baillon] is a medicinal herb widely used for treating various inflammatory and immune diseases in East Asian countries. The Schisandrae Semen essential oil (SSeo) from this plant has pharmacological activities, including antioxidant, antimicrobial, and antitumoral activities. Nevertheless, the biological activities and underlying molecular mechanisms of the potential anti-cancer effects of this oil remain unclear. In the present study, we investigated the potential inhibition of apoptosis signaling pathways by SSeo in human leukemia U937 cells and evaluated the underlying molecular mechanism. Exposure to SSeo resulted in a concentration-dependent growth inhibition due to apoptosis, which was verified by DNA fragmentation, the presence of apoptotic bodies, and an increase in the sub-G1 ratio. Induction of apoptotic cell death by SSeo was correlated with the down-regulation of members of the inhibitor of apoptosis protein (IAP) family (including X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and surviving) and anti-apoptotic Bcl-2, and with up-regulation of death receptor (DR) 4 and DR5, depending on dosage. SSeo treatment also induced Bid truncation, mitochondrial dysfunction, proteolytic activation of caspase-3, -8 and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase. Taken together, these findings suggest that SSeo may be a potential chemotherapeutic agent for use in the control of human leukemia cells. Further studies are needed to identify its active compounds.

Extract of Alnus japonica Induces Apoptosis of Human Colon Adenocarcinoma Cells through the Mitochondria/Caspase Pathway (대장암세포주에서 적양 추출물의 미토콘드리아/Caspases 경로를 통한 Apoptosis 유도 작용)

  • Jeon, Byoung-Kook;Baik, Soon-Ki;Woo, Won-Hong;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.199-205
    • /
    • 2012
  • An extract of Alnus japonica (Betulaceae) cortex has been traditionally used for purifying blood, and curing feces containing blood, enteritis, diarrhea, alcoholism and cut wounds. In the present study, we demonstrated that the ethanol extract of Alnus japonica (EAJ) exhibited significantly cytotoxicity in human colon adenocarcinoma HT-29 cells. The results showed that the induction of apoptosis in HT-29 cells by EAJ was characterized by chromatin condensation and activation of caspase-3. EAJ-induced activation of caspase-9 and -3 caused the cleavage of poly ADP-ribose polymerase (PARP) and the release of cytochrome c. The expressions of Bcl-2 and Bid were reduced by EAJ in HT-29 cells, whereas pro-apoptotic protein Bak was increased in the cells. EAJ-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP kinases (JNK and p38 MAPK), ASK1, and p53. NAC administration, a scavenger of ROS, reversed EAJ-induced cell death. In conclusion, these results indicated that EAJ can cause apoptosis through a ROS-mitochondria-caspases-dependent pathway in human HT-29 cells.

Induction of Apoptosis by Baicalein in Human Leukemia HL-60 Cells

  • Kim, Jang-Ho;Park, Sun-Young;Shin, Kwang-Sig;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • v.17 no.2
    • /
    • pp.131-137
    • /
    • 2001
  • Baicalein, a major flavonoid of extract from Scutellaria baicalensis Georgi, has been shown to exhibit antioxidant and anti proliferative effects. In the present study, we investigate the effects of baicalein on viability and induction of apoptosis in human promyelocytic leukemia HL-60 cells. Baicalein was found to induce apoptosis of HL-60 cells in a concentration-dependent and time-dependent manner. When HL-60 cells were exposed to 100 $\mu\textrm{M}$ baicalein for 6h, the viability was decreased remarkably to 27% of control, whereas DNA fragmentation was significantly increased to 64%. Nucleosomal fragmentation of baicalein treated HL-60 cells, a hallmark of apoptosis, was further identified by agarose gel electrophoresis (DNA ladder). Flow cytometric analysis showed that apoptotic cells were increased to 66.6% after treatment with 100 $\mu\textrm{M}$ baicalein for 6 h. Baicalein-induced apoptosis of HL-60 cells was reduced by 1h pretreatment with inhibitor of caspases, z-Asp-$CH_2$-DCB. At 3 and 10 $\mu\textrm{M}$ of z-Asp-$CH_2$-DCB, DNA fragmentation of HL-60 cells induced by baicalein (50 $\mu\textrm{M}$) was 36.8 and 17.1 %, respectively, whereas, that of HL-60 cells treated by baicalein (50 $\mu\textrm{M}$) without pretreatment with inhibitor of caspases was 62.7%. These data suggest that baicalein induces apoptosis in human leukemia HL-60 cells, and that caspase enzymes might be involved in baicalein-induced apoptosis.

  • PDF