• Title/Summary/Keyword: Apoptosis inhibitor

Search Result 795, Processing Time 0.029 seconds

Growth Inhibition of Human Lung Carcinoma Cells by ${\beta}>-lapachone$ through Induction of Apoptosis (Tabebuia avellanedae에서 유래된 ${\beta}>-lapachone$의 인체폐암세포 apoptosis 유발에 관한 연구)

  • Choi, Byung-Tae;Lee, Yong-Tae;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.722-728
    • /
    • 2005
  • The DNA topoismerase I inhibitor ${\beta}-lapachone$, the product of a lapacho tree (Tabebuia avellanedae) from South America, activates a novel apoptotic response in a number of cell lines. In the present report, we investigated the effects of ${\beta}-lapachone$ on the growth of human lung in human non-small-cell-lung-cancer A549 cells. Upon treatment with ${\beta}-lapachone$, a concentration-dependent inhibition of cell viability and cell proliferation was observed as measured by hemocytometer counts and MTT assay. The ${\beta}-lapachone-treated$ cells developed many of the hallmark features of apoptosis, including membrane shrinking, condensation of chromatin and DNA fragmentation. These apoptotic effects of ${\beta}-lapachone$ in A549 cells were associated with a marked induction of pro-apoptotic Bax expression, however the levels of anti-apoptotic Bcl-2 expression were decreased in a dose-dependent manner. Accordingly, elevated amount of cyclin-dependent kinase inhibitor p21 expression accompanied by up-regulation of tumor suppressor p53 was observed. By RT-PCR analyses, decrease in gene expression level of telomerase reverse transcriptase and telomeric repeat binding factor were also observed. Thus, these findings suggest that ${\beta}-lapachone$ may be a potential anti-cancer therapeutics for the control of human lung cancer cell model.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Synergistic Induction of Apoptosis by the Combination of an Axl Inhibitor and Auranofin in Human Breast Cancer Cells

  • Ryu, Yeon-Sang;Shin, Sangyun;An, Hong-Gyu;Kwon, Tae-Uk;Baek, Hyoung-Seok;Kwon, Yeo-Jung;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDA-MB-231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma

  • Rath, Sonali;Jagadeb, Manaswini;Bhuyan, Ruchi
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.46.1-46.11
    • /
    • 2021
  • Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.

Angiopoietin-1 Is An Radiation-induced Apoptosis Survival Factor for Human Umbilical Vein Endothelial Cells (방사선을 조사한 혈관내피세포에 대한 Angiopoietin-1의 방사선 방어 기작)

  • Lee, Song-Jae;Chang, Chae-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.166-173
    • /
    • 2000
  • Angiopoietin-1(Ang-1) is a vasculogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. We examined the effect of angiopoietin-1(Ang-1) on radiation-induced apoptosis in human umbilical vein endothelial cells(HUVECS) and receptor/second messenger signal transduction pathway for Ang-1's effect on HUVECs. The percent of apoptotic cells under control condition(0Gy) was $8.2\%$. Irradiation induced apoptosis was increased in a dose(1, 5, 10, and 15Gy)- and time 12, 24, 48 and 72hr)-dependent manner. The percent of apoptotic cells was approximately $34.9\%$ after 15 Gy of irradiation. Under these conditions, pretreatment with Ang-1's (50, 100, 200, and 400 ng/ml) inhibited irradiation-induced apoptosis in human umbilical vein endothelial cells in a dose-dependent manner. Two hundred ng/ml of Ang-1 inhibited approximately $55-60\%$ of the apoptotic events that occurred in the 10 Gy-irradiated cells. Pre-treatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang-1's antiapoptotic effects. Phosphatidylinositol 3'-kinase (P13-kinase) specific inhibitor, wortmanin and LY294002, blocked the Ang-1-induced antiapoptotic effect. Ang-1 promotes the survival of endothelial cells in irradiation-induced apoptosis through Tie2 receptor binding and P13-kinase activation. Pretreatment of Ang-1 could be beneficial in maintaining normal endothelial cell integrity during irradiation therapy.

  • PDF

MDL-12330A potentiates TRAIL-induced apoptosis in gastric cancer cells through CHOP-mediated DR5 upregulation

  • Lim, Sung-Chul;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.397-405
    • /
    • 2017
  • MDL-12330A is a widely used adenylyl cyclase (AC) inhibitor that blocks AC/cAMP signaling. In this study, we demonstrated a novel antitumor activity of this drug in gastric carcinoma (GC) cell lines. In these GC cells, MDL-12330A reduced cell viability and induced cell death in a concentration-dependent manner. At a moderate concentration (${\sim}20{\mu}M$), MDL-12330A mainly induced apoptotic death whereas at concentrations greater than $20{\mu}M$, it increased non-apoptotic cell death. The induction of apoptosis was at least partially regulated by CHOP-mediated DR5 upregulation, as detected by immunoblotting and gene interference assays. More importantly, low concentrations of MDL-12330A effectively enhanced recombinant human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (rhTRAIL)-induced apoptosis and clonogenicity in these gastric cancer cells. This study demonstrates a possible role of MDL-12330A as a potential sensitizer to TRAIL, and suggests a novel therapeutic strategy targeting gastric cancer cells.