• 제목/요약/키워드: Apoptosis inducing factor

검색결과 131건 처리시간 0.031초

CTRP9 Regulates Growth, Differentiation, and Apoptosis in Human Keratinocytes through TGFβ1-p38-Dependent Pathway

  • Jung, Tae Woo;Park, Hyung Sub;Choi, Geum Hee;Kim, Daehwan;Lee, Taeseung
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.906-915
    • /
    • 2017
  • Impairment of wound healing is a common problem in individuals with diabetes. Adiponectin, an adipocyte-derived cytokine, has many beneficial effects on metabolic disorders such as diabetes, obesity, hypertension, and dyslipidemia. C1q/TNF-Related Protein 9 (CTRP9), the closest paralog of adiponectin, has been reported to have beneficial effects on wound healing. In the current study, we demonstrate that CTRP9 regulates growth, differentiation, and apoptosis of HaCaT human keratinocytes. We found that CTRP9 augmented expression of transforming growth factor beta 1 ($TGF{\beta}1$) by transcription factor activator protein 1 (AP-1) binding activity and phosphorylation of p38 in a dose-dependent manner. Furthermore, siRNA-mediated suppression of $TGF{\beta}1$ reversed the increase in p38 phosphorylation induced by CTRP9. siRNA-mediated suppression of $TGF{\beta}1$ or p38 significantly abrogated the effects of CTRP9 on cell proliferation and differentiation while inducing apoptosis, implying that CTRP9 stimulates wound recovery through a $TGF{\beta}1$-dependent pathway in keratinocytes. Furthermore, intravenous injection of CTRP9 via tail vein suppressed mRNA expression of Ki67 and involucrin whereas it augmented $TGF{\beta}1$ mRNA expression and caspase 3 activity in skin of type 1 diabetes animal models. In conclusion, our results suggest that CTRP9 has suppressive effects on hyperkeratosis, providing a potentially effective therapeutic strategy for diabetic wounds.

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

  • Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제18권1호
    • /
    • pp.19-26
    • /
    • 2015
  • Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC) have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax) ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-${\kappa}B$ expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.

Induction of Apoptosis by Gagamhwanglyeonhaedog-tang through Activation of Caspase-3 in Human Leukemia Cell Line HL-60 Cells

  • Park Sang Goo;Won Jin Hee;Kim Dong Woung;Moon Goo
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1173-1178
    • /
    • 2004
  • Gagamhwanglyeonhaedog-tang(GHH), a Korean genuine medicine, is a newly designed herbal drug formula based on the traditional oriental pharmacological knowledge for the purpose of treating tumorous diseases. Apoptosis is an evolutionarily conserved suicide program residing in cells. It leads to cell death through a tightly regulated process resulting in the removal of damaged or unwanted tissue. In the present study, the apoptosis inducing activities of the decocted water extract of GHH were studied. Results of the 3- [4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay showed that GHH had a strong cytotoxic effect on HL-60 cells. The number of live cells was less than 20% after exposure to 1㎎/㎖ GHH for 48 hr. GHH increased cytotoxicity of HL-60 cells in a dose- and time­dependent manner. Cell apoptosis by GHH was confirmed by flow cytometric analysis of the DNA-stained cells. The percentage of apoptotic cells increased to 28%, 31% and 37% 24 hr and 37%, 44% and 81% 48 hr after treatment with 0.01, 0.1 and 1㎎/㎖ GHH, respectively. Flow cytometric analysis of GHH treated HL-60 cells showed increase of hypodiploid apoptotic cells in a dose- and time- dependent manner. DNA fragmentation also occurred in apoptosis and was characterized by a ladder pattern on agarose gel. In addition, GHH (0.01 and 0.1㎎/㎖) increased the secretion of tumor necrosis factor-alpha in 24 and 48 hr. The author showed that GHH-induced apoptosis was accompanied by activation of caspase-3. These results suggest that GHH induces activation of caspase-3 and eventually leads to apoptosis.

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제23권4호
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향 (Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells)

  • 한민호;최영현
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.431-438
    • /
    • 2016
  • TRAIL은 정상세포에서는 세포독성을 나타내지 않는 반면, 암세포에서는 사멸을 유도하므로 항암제로 각광받고 있지만 많은 암세포에서 TRAIL에 저항성을 가지고 있는 것으로 알려져 있으므로 이를 극복해야하는 큰 어려움이 남아있다. 본 연구에서는 TRAIL에 저항성을 가지는 인간 방광암 세포주인 5637 세포를 이용하여 histone deacetylase 억제제인 sodium butyrate (SB)와 TRAIL을 혼합처리하였을 경우 유발되는 세포사멸 효과와 이와 관련된 분자생물학적 메카니즘을 연구하였다. 세포독성이 없는 조건의 TRAIL과 SB를 혼합처리 하였을 경우 SB 단독처리군 보다 세포사멸이 현저하게 증가하는 것으로 확인되었다. TRAIL과 SB의 혼합처리는 caspases (caspase-3, -8 and -9)의 활성화 및 PARP의 단편화를 유발하였다. 하지만 caspase 억제제에 의하여 TRAIL과 SB의 혼합처리에 의하여 유발되는 apoptosis가 현저하게 억제되는 것으로 나타났다. 또한 TRAIL과 SB의 혼합처리는 세포표면에 존재하는 DR5의 발현 증가 및 c-FLIP의 발현 감소를 유발하였으며, pro-apoptotic protein인 Bax와 세포질 cytochrome c의 발현 증가 및 anti- apoptotic protein인 Bcl-xL의 발현감소와 함께 tBid의 형성을 유발하였다. 이는 SB와 TRAIL의 혼합처리가 안전하고 선택적으로 TRAIL에 저항성을 가지는 방광암 세포에서 치료하는데 효과적인 전략임을 제시하는 결과이다.

인간 대장암 HT-29 세포에서 제주조릿대의 세포사멸 효과 (Apoptotic Effect of Sasa quelpaertensis Nakai in Human Colon Cancer HT-29 Cells)

  • 변지희;김민영
    • 생명과학회지
    • /
    • 제24권9호
    • /
    • pp.1012-1018
    • /
    • 2014
  • 제주조릿대(Sasa quelpaertensis Nakai)는 한라산에 넓게 분포되어 자생하는 식물로 최근 연구에서 항염증, 항당뇨, 항산화, 항암 효능을 가지는 것으로 알려져 있으나 대장암에서의 항암 효능 및 그에 따른 mechanism에 대해서는 명확히 밝혀지지 않았다. 본 연구에서는 인간 대장암 HT-29 세포를 대상으로 제주조릿대에 의한 항암작용과 기전에 대해 조사하였다. 제주조릿대에 의한 HT-29 세포의 증식 억제가 apoptosis 유도와 연관성이 있음을 DNA fragmentation와 flow cytometry 분석에 의한 sub-G1기의 세포빈도의 증가로 확인하였다. 제주조릿대에 의한 apoptosis 유발은 HT-29 세포의 S arrest 현상을 동반하였을 뿐만 아니라 발생한 산화질소의 증가와 anti-apoptotic factor인 IAP family (survivin, XIAP, cIAP-1, cIAP-2) 발현이 감소함으로써 촉진되었음을 확인할 수 있었다. 이러한 결과들은 제주조릿대가 대장암에 대한 치료제로서의 사용 가능성을 확인할 수 있었지만 이를 입증하기 위해서는 더 자세한 항암기전에 관한 연구가 진행되어야 한다고 사료된다.

인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도 (Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells.)

  • 박철;김성윤;최병태;이원호;최영현
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.336-343
    • /
    • 2008
  • 본 연구에서는 인체전립선 상피세포인 267B1 세포에서 HDAC 저해제인 TSA에 의한 증식억제가 apoptosis 유도에 의한 것임을 제시하였다. 이러한 TSA에 의한 267B1 세포의 apoptosis에는 c-IAP-1 및 c-IAP-2와 같은 IAP family의 발현감소가 동반되었으나 Bax 및 Bcl-2와 같은 Bcl-2 family의 발현에는 큰 변화가 없었다. 그리고 TSA에 의한 267Bl 세포의 apoptosis는 caspase의 활성에 의한 표적 단백질들의 분해와 연관성이 있었다. 또한 TSA에 의한 apoptosis 유도에서 $NF-{\kappa}B$의 활성이 증가된다는 것을 세포질에서 $NF-{\kappa}B$의 핵 내로의 이동에 따른 전사활성의 증가 현상에 의한 것임을 다양한 방법으로 제시하였다. 본 연구의 결과는 TSA와 같은 HDAC 저해제에 의한 apoptosis 유도에는 $NF-{\kappa}B$의 활성 증가가 동반될 수 있음을 보여주는 결과로서 HDAC 저해제의 항암활성에 대한 $NF-{\kappa}B$의 새로운 역할 가능성을 제시하여 주는 것으로서 이에 관한 추가적인 연구의 필요성을 제시하였다.