• Title/Summary/Keyword: Apis mellifera Insecticides

Search Result 12, Processing Time 0.021 seconds

Do neonicotinoid insecticides impaired olfactory learning behavior in Apis mellifera?

  • Imran, Muhammad;Sheikh, Umer Ayyaz Aslam;Nasir, Muhammad;Ghaffar, Muhammad Abdul;Tamkeen, Ansa;Iqbal, Muhammad Aamir
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.38 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Bee's population is declining and disappearing at alarming rate. There are many factors responsible for declining the population of bees including diseases, natural enemies, environmental conditions and pesticides. Insecticides play its role dramatically for their population decline and neonicotinoid insecticides are critically important due to their wide application for pest control. Keeping in view of above problem, effect of neonicotinoid insecticides on olfactory learning behavior in Apis mellifera was observed using Proboscis Extension Reflex (PER) method. In this method, bees were harnessed in centrifuges tubes and feed on insecticides mixed sugar solution after three hours hunger. Bees were checked by feeding on non-treated sugar solution to observe PER response. Minimum proboscis extension was observed for acetamiprid and imidacloprid with 26% and 20% respectively at their recommend field doses while it was maximum for dinotefuran and thiamethoxam with 73% and 60% respectively. Only 40% bees showed response when exposed at 1/10 concentration of field dose for imidacloprid and the least at 1/100 of field dose. At control (Sugar solution) about 90% bees showed PER response. Among these neonicotinoid insecticides tested, imidacloprid and acetamiprid were the most damaging which impaired the olfactory learning performance in Apis mellifera.

Avoidance Behavior of Honey bee, Apis mellifera from Commonly used Fungicides, Acaricides and Insecticides in Apple Orchards

  • Kang, Moonsu;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Avoidance behavior is an important life history strategy to survive hazardous environment. The experiment was conducted to detect the avoidance tendency of the honeybee Apis mellifera against commonly used pesticides in apple production. Choice test given only 50% sucrose solution and pesticide-mixed sucrose solution as food estimated the avoidance in laboratory. Most of the acaricides and fungicides tested were shown avoided. Among insecticides, honeybee showed strong avoidance to cyhexatine, carbosulfan and fenpyroximate but low to diflubenzuron, tebufenpyrad, and acrinathrin. Avoidance behavior to neonicotinoid insecticides showed bifurcated; highly avoided from thiacloprid, acetamiprid while less avoided from imidacloprid, thiamethoxam and dinotefuran. From the field study, abamectin, fenthion, amitraz and acequinocyl showed highly avoided while fungicide of fenarimol, acaricides of acrinathrin and phosphamidon, IGR insecticide of diflubenzuron, neonicotinoid insecticide of imidacloprid, and carbamate insecticide of carbaryl showed less avoidance in the field. These results partly explained high bee poisoning from carbaryl in apple flowering period, and neonicotinoids during season.

Comparison of Acute Toxicity of Different Groups of Pesticides to Honey Bee Workers(Apis Mellifera L.)

  • Ulziibayar, Delgermaa;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Honey bees (Apis mellifera) forage in agricultural areas, and are exposed to diverse pesticide poisoning. Toxic effects on Apis mellifera of different groups of pesticides were tested in the laboratory; fungicide (Metconazole), herbicide (Glyphosate), acaricide (Amitraz), organophosphate insecticide(Fenitrothion) and neonicotinoid insecticides(Thiacloprid, Thiamethoxam, Imidacloprid, Acetamiprid, Dinotefuran and Clothianidin). Commercial formulations were serially diluted from the recommended concentration (RC) to 10-6 times to carry out feeding and contact tests. Toxicity was transformed into lethal dose (LD50) and hazard question (HQ). The acute toxicity of pesticides showed similar patterns between feeding and contact tests. But feeding tests showed greater toxic to honey bee than contact test. The organophosphate and nitro-neonicotinoid insecticides were highly toxic with HQ values ranging greater than 1. However, cyano-neonicotinoids of Thiacloprid and Acetamiprid showed low toxicity. Even at the RC, 24 hr mortalities were 18 and 30%. The acaricide (Amitraz) showed intermediate level of toxicity at RC but negligible at the concentration lower than 10-1 times. A fungicide(Metconazole) and herbicide(Glyphosate) showed minimal impacts. The results imply that the selective use of pesticides could help conservation of pollinators in agricultural production systems.

Evaluation of Toxicity of Pesticides against Honeybee (Apis mellitera) and Bumblebee (Bombus terrestris) (꿀벌과 서양뒤영벌에 대한 농약의 독성평가)

  • Ahn, Ki-Su;Oh, Mann-Gyun;Ahn, Hee-Geun;Yoon, Chang-Mann;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.382-390
    • /
    • 2008
  • This study was performed to evaluate the acute toxicity and residual toxicity of the 69 kinds of agrochemicals (41 insecticides, 18 fungicides, and 10 acaricides) against honeybee, Apis mellifera and bumblebee, Bombus terrestris. According to the IOBC standard, the toxicity showed below 30% was classified as non-toxic. Among 41 insecticides, five insecticides (acetamiprid, chlorfenapyr, thiacloprid, milbemectin, and buprofezin+amitraz) against the honeybee; eight insecticides (methomyl, thiodicarb, acetamiprid, chlorfenapyr, thiacloprid, abamectin, spino sad, buprofezin+amitraz) against the bumblebee did not show any toxic effect. Therefore, it thought to being safe. Other 18 fungicides and 10 acaricides were safe against the honeybee and bumblebee. In residual toxicity against the honeybee, eight insecticides (dichlorvos, methomyl, imidachlorprid, emamectin benzoate, spinosad, cartap hydrochloride, chlorfenapyr, and endosulfan) among 41 insecticides tested were safe at three days after treatment; however, sixteen insecticides (dimethoate, fenitrothion, fenthion, methidathion, phenthoate, pyraclofos, fenpropathrin, clothianidin, dinotefuran, thiamethoxam, abamectin, acetamiprid+ethofenprox, acetamiprid+indoxacarb, bifenthrin+imidacloprid, ethofenprox+phenthoate, imidacloprid+methiocarb) still remain high toxicity at eleven days after treatment. Against the bumblebee, residual toxicity showed as safe in seven insecticides (dimethoate, methidation, a-cypermethion, ethofenprox, indoxcarb, chlorpyrifos+a-cypennethrin, esfenvalerate+fenitrochion) at three days after treatment; however, eight insecticides (fenitrothion, pyraclofos, clothianidin, fipronil, acetamiprid+ethofenprox, chlorpyrifos+bifenthrin, ethofenprox+phenthoate, imidacloprid+methiocarb) still showed high toxicity at seven days after treatment. From above results, it will be useful information to select insecticides being safe and effective against the honeybee and bumblebee.

Enzyme Activities of a Honeybee(Apis mellifera L.) Associated with the Degradation of Some Insecticides (서양종(西洋種)꿀벌의 살충제분해효소에 관(關)한 연구(硏究))

  • Suh, Yong-Tack;Shim, Jae-Han
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.241-248
    • /
    • 1988
  • In order to determine the approptiate usage of insecticides to honeybee(Apis mellifera L.), median effective dose to seven insecticides were studied. $LC_(50)$ value of DDT was the highest as being 58 ppm, and that of EPN was the lowest as being 1.61ppm. Various detoxifying enzymes from the midget cf adult worker bee, including microsomal oxidases, glutathione Stransferases, esterases, and DDT-dehydrochlorinase were assayed. Effects of various insecticides on microsomal enzyme activities were as follows: Aldrin epoxidase activity was inhibited by malathione and permethrin treatment. N-demethylase activity was induced by diazinon and EPN treatment and O-demethlase activity was induced by diazinon treatment. Of the glutathione S-transferases, aryltransferase(DCNB conjugation) activity was significantly induced by diazinon, and moderately induced by permethrin. Of the esterases, ${\alpha}-NA$ esterase activity was moderately inhibited by malatjione and permethrin. Acetylcholinesterase activity was not affected by the sublethal exposure of honeybee to the insecticides. Sublethal exposure of honeybee to the insecticides had no effect on DDT-dehydrochlorinase activity, except carbaryl and permethrin were significantly induced.

  • PDF

Honeybee Toxicity by Residues on Tomato Foliage of Systemic Insecticides Applied to the Soil (침투이행성 농약의 토양처리 후 토마토잎에서의 잔류에 의한 꿀벌 독성)

  • Bae, Chul-Han;Cho, Kyung-Won;Kim, Yeon-Sik;Park, Hyun-Ju;Shin, Kwan-Seop;Park, Yeon-Ki;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.178-184
    • /
    • 2013
  • Residual toxicity test to honeybee was conducted to evaluate an indirect effects on honeybee after planting hole application of systemic insecticides which were highly toxic to honeybee (Apis mellifera). In this study, It was applied three application rates in the planting hole by three systemic insecticides, dinotefuran GR, imidacloprid GR and clothianidin GR at planting time of tomato. Residual analysis of foliage was carried out after periodic sampling the foliage and investigated the effects of exposed honeybee on the tomato foliage. The honeybee mortality by dinotefuran residues on the foliage was shown almost 100% at 7 days after treatment and decreased 17 days after treatment. The maximum mortality of honeybee by imidacloprid residues on the foliage was 44 ~ 72%. But the effect of pesticide lasted for 18 days and then decreased. The honeybee mortality by clothianidin residues on the foliage was 100% at 7 days after treatment and decreased 14 days after treatment. A tendency of the honeybee mortality and residue in foliage showed a similar character as time goes by. The residues in tomato foliage decreased gradually after 14 days by vigorous growth of tomatoes and the toxic effect of honeybee was significantly decreased after 21 days in actual usage of the treatment.

Evaluation of The Susceptibility of Several Insecticides to Honey Bee Pest, Vespa velutina nigrithorax (Hymenoptera: Vespidae) (꿀벌 해충 등검은말벌 방제를 위한 화학 살충제 이용 가능성 평가)

  • Dongeui Hong;Chuleui Jung
    • Korean journal of applied entomology
    • /
    • v.63 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Vespa velutina nigrithorax du Buysson, 1905 is the invaded species in Korea since 2003. Since its importance as the honey bee pest, beekeepers use insecticides to kill the adult and immature hornets. However, its legality and effectiveness has not been confirmed. This study investigated the susceptibility of insecticides commonly used to control hornets by beekeepers in Korea. Eight insecticides were tested on adult worker and larvae by topical or oral treatment. Adults showed more than 70% mortalities from Clothianidin, Dinotefuran, and Carbosulfan treatment within 30 minutes. Bifenthrin and Cartap hydrochloride showed relatively low toxicity. The median lethal dose (LD50) for Clothianidin, Dinotefuran, and Carbosulfan was 0.29, 0.65, and 2.21 ㎍/bee, respectively. In larval feeding test where 5th instar larvae were fed 3 times every 24 hours, the mortality began after second treatments. After 3rd treatments (72 h), all insecticides showed mortality more than 70%. The LD50 values of Clothianidin, Dinotefuran, and Carbosulfan to V. velutina were approximately 10 to 100 times higher than those to honey bee, Apis mellifera. This study provides the basic information of those chemical toxicities to Vespa hornet and honey bees.

Evaluation of Acute and Residual Toxicity of Insecticides Registered on Strawberry against Honeybee (Apis mellifera) (딸기에 등록된 살충제의 꿀벌에 대한 급성 및 엽상잔류독성)

  • Ahn, Ki-Su;Yoon, Changmann;Kim, Ki-Hyun;Nam, Sang-Young;Oh, Man-Gyun;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.185-192
    • /
    • 2013
  • This study was performed to evaluate the spray toxicity and leaf residual toxicity of 52 kinds of insecticides registered for strawberry against adult honeybee Apis mellifera. According to the IOBC standard, the acute toxicity by spraying showed below 30% was classified as non-toxic. Among tested insecticides, 32 insecticides (flonicamid, lufenuron, novaluron, three kinds of acetamiprid, thiacloprid, milbemectin, acequinocyl, TBI-1, two kinds of chlorfenapyr, chlorfluazuron, cyenopyrafen, cyfumetofen, etoxazole, fenpyroximate, flubendiamide, flufenoxuron, hexythiazox, metaflumizone, two kinds of methoxyfenozide, DBB-2032, pyridalyl, spiromesifen, tebufenpyrad, teflubenzuron, acetamiprid + methoxyfenozide, acrinathrin + spiromesifen, bifenazate + spiromesifen, cyenopyrafen + flufenoxuron) did not show any toxic effect, it is thought to be safe. And the others (20 insecticides) showed higher toxicity to honeybee. Insecticides which showed acute toxicity higher than 90% was selected and tested the residual toxicity. All insecticides except emamectin benzoate EC, and indoxacarb SC showed 100% mortality at one day after treatment (DAT). However, the toxicities of emamectin benzoate, indoxacarb SC, and abamectin did not show until 3, 7, 14 DAT, respectively. Nine insecticides such as indoxacarb WP, thiamethoxam WG, abamectin + chlorantraniliprole SC, acetamiprid + etofenprox WP, acetamiprid + indoxacarb WP, bifenthrin + clothianidin SC, bifenthrin + imidacloprid WP, bifenazate + pyridaben SC, chlorfenapyr + clothianidin SC showed over 90% residual toxicity until 31 Day. In pouring treatment, thiamethoxam WG showed 76.9% mortality at 28 DAT and 50.0% mortality at 31 DAT. After 35 days, thiamethoxam WG showed no effect to honeybee. Bifenthrin + clothianidin SC and tefluthrin + thiamethoxam GR showed 57.1 and 80.0% mortality at 24 DAT, respectively. In spraying treatment, thiamethoxam WG and bifenthrin+clothianidin SC showed very high residual toxicity with 100% mortality in thirty-five DAT. After spraying treatment with thiamethoxam WG, bifenthrin+clothianidin SC, bifenthrin + imidacloprid WP, thiamethoxam WG showed 100% residual toxicity until 21 DAT and there was no activity after 28 DAT. Bifenthrin+clothianidin SC and bifenthrin+imidacloprid WP showed very high residual toxicity until 49 DAT.

Acute Ecotoxicity Evaluation of Thyme White, Clove Bud, Cassia, Lavender, Lemon Eucalyptus Essential Oil of Plant Extracts (식물추출물 싸임화이트, 클로브버드, 계피, 라벤더, 레몬 유칼립투스 정유의 생태독성평가)

  • You, Are-Sun;Choi, Young-Woong;Jeong, Mi-Hye;Hong, Soon-Seong;Park, Yeon-Ki;Jang, Hui-Sub;Park, Jae-Yup;Park, Kyung-Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2011
  • Environment-friendly agro-materials tend to be preferred to chemical insecticides recently. For this reason, many studies were conducted to develop environment-friendly insecticides containing natural materials. The purpose of this study was to assess ecotoxicity for 5 plant essential oils (Thyme white, Clove bud, Cassia, Lavender, Lemon eucalyptus) expected to prevent from pests and be used for agro-materials. Target species used to assess acute toxicity were aquatic invertebrate (Daphina magna), fish (Oryzias latipes), honeybee (Apis mellifera L.) and earthworm (Eisenia fetida). The EC50 value, toxicological responses of thyme white, clove bud, and cassia to Daphina magna were 2.5, 2.8, and $6.9mg\;L^{-1}$ respectively and these values were moderately toxic according to standard of USEPA. $EC_{50}$ of Lavender and lemon eucalyptus were >$10mg\;L^{-1}$ then they were considered as slightly toxicity. In case of acute toxicity test to fish, $LC_{50}$ of thyme white and cassia were 6.7 and $7.5mg\;L^{-1}$ each other. The other plant essential oils indicated $LC_{50}$ >$10mg\;L^{-1}$. Acute contact and oral toxicity test to Honeybee were conducted. As a result, $LD_{50}$ of all essential oils were >$100{\mu}g$ a.i. $bee^{-1}$ in both of tests. In case of acute toxicity test to earthworm, $LC_{50}$ of thyme white, clove bud, cassia, lavender, and lemon eucalyptus were 149, 230, 743, 234, and $635mg\;kg^{-1}$, respectively. In conclusion, if the safety for earthworm is confirmed, 5 plant essential oils are expected to be use for environment-friendly insecticide materials with low risk against ecosystem and contribute to developing environment-friendly agro-materials.

Residual Toxicity of Bifenthrin and Imidacloprid to Honeybee by Foliage Treatment (Bifenthrin과 Imidacloprid의 작물잎에서의 잔류량과 꿀벌에 대한 독성)

  • Cho, Kyung-Won;Park, Hyun-Ju;Bae, Chul-Han;Kim, Yeon-Sik;Shin, Dong-Chan;Lee, Seung-Yeol;Lee, Suk-Hee;Jung, Chang-Kook;Park, Yeon-Ki;Kim, Byung-Seok;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.226-234
    • /
    • 2010
  • Foliage residue toxicity experiment was performed against honeybee (Apis mellifera) with bifenthrin, a synthetic pyrethroid insecticide with strong acute contact toxicity and imidacloprid, a neo-nicotinoid insecticide with strong acute oral toxicity to know the honeybee toxicity at the residue level on the leaves of alfalfa and apple. Also, the formulation differences to honeybee toxicity were investigated with WP (2%) and EC (1%) of bifenthrin and WP (10%) and SL (4%) of imidacloprid. Generally, foliage residual toxicity of honeybee and residual amounts of tested insecticides was higher in alfalfa leaves with large leaf area per unit weight than in apple leaves. While on the other hand, the only bifenthrin WP treatment showed higher honeybee toxicity on apple leaves than alfalfa. Although imidacloprid showed higher residue amounts ranged $4.9{\sim}25.4\;mg{\cdot}kg^{-1}$ than bifenthrin ranged $0.6{\sim}12.7\;mg{\cdot}kg^{-1}$ on the leaves, the residual toxicity to honeybee was lower than bifenthrin because of its strong penetration character. In conclusion, the residual toxicity of insecticide to honeybee could be affected by the contact and vaporized toxicity of chemical, the residual amounts on the surface of leaves, and the leaf area per unit weight and formulation differences.