• 제목/요약/키워드: Apicidin A

검색결과 22건 처리시간 0.017초

Pharmacokinetics of SD-0542, a Novel Histone Deacetylase Inhibitor, in Rats

  • Shin, Beom-Soo;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권5호
    • /
    • pp.349-353
    • /
    • 2005
  • This study reports the pharmacokinetics of a novel histone deacetylase inhibitor, SD-0542, in rats after i..v. and oral administration. SD-0542 was injected intravenously at doses of 10, 20, and 40 mg/kg. The terminal elimination half-life $(t_{1/2})$, systemic clearance (Cl), and steady-state volume of distribution $(V_{ss})$ remained unaltered as a function of dose, with their values ranging from 2.0-2.5 hr, 157.2-214.1 ml/min/kg, and 11.1-17.5 L/kg, respectively, whereas, the initial serum concentration $(C_0)$ and AUC increased linearly as the dose was increased. Renal excretion of SD-0542 was minimal. Oral pharmacokinetic studies were conducted in rats at a dose of 20 mg/kg. The $T_{max}$, Cl/F, $V_{z}/F$, and $t_{1/2}$ were 2.0 hr, 92864 ml/min/kg, 16331 L/kg, and 2.0 hr, respectively. Taken together, SD-0542 showed linear pharmacokinetics over the i.v. bolus dose range studied. SD-0542 was poorly absorbed, with the absolute oral bioavailability of 0.9%.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.