• Title/Summary/Keyword: Apical transportation

Search Result 25, Processing Time 0.023 seconds

Comparison of apical transportation and change of working length in K3, NRT AND PROFILE rotary instruments using transparent resin block (Transparent resin block을 이용한 K3, NRT, PROFILE의 apical transportation 및 working length 변화양상의 비교)

  • Yoon, Min-Jung;Song, Min-Ju;Shin, Su-Jung;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • Objectives: The purpose of this study is to compare the apical transportation and working length change in curved root canals created in resin blocks, using 3 geometrically different types of Ni-Ti files, K3, NRT, and Profile. Materials and Methods: The curvature of 30 resin blocks was measured by Schneider technique and each groups of Ni-Ti files were allocated with 10 resin blocks at random. The canals were shaped with Ni-Ti files by Crown-down technique. It was analyzed by Double radiograph superimposition method (Backman CA 1992), and for the accuracy and consistency, specially designed jig, digital X-ray, and CAD/CAM software for measurement of apical transportation were used. The amount of apical transportation was measured at 0, 1, 3, 5 mm from 'apical foramen - 0.5 mm' area, and the alteration of the working length before and after canal shaping was also measured. For statistics, Kruskal-Wallis One Way Analysis was used. Results: There was no significant difference between the groups in the amount of working length change and apical transportation at 0, 1, and 3 mm area (p = 0.027), however, the amount of apical transportation at 5 mm area showed significant difference between K3 and Profile system (p = 0.924). Conclusions: As a result of this study, the 3 geometrically different Ni-Ti files showed no significant difference in apical transportation and working length change and maintained the original root canal shape.

A STUDY OF HISTOMORPHOLOGICAL CHANGE OF CURVED ROOT CANAL PREPARATION USING GT ROTARY FILE, PROFILE AND STAINLESS STEEL K-FILE (수종의 Engine driven NiTi file과 stainless steel K-file을 이용한 근관형성 후 근관의 조직형태학적 변화에 관한 연구)

  • Ko, Hyung-Jung;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.612-621
    • /
    • 2002
  • The purpose of this study was to compare the histomorphological change of curved root canal preparation using GT rotary File, Profile .04 taper and stainless steel K-file. 45 mesial canals(over 20 degree) of extracted human mandibular first molars were mounted in resin using a modified Bramante muffle system and divided into three groups. The roots were cross-sectioned at 2.5mm 5mm and 8mm levels from apical foramen. Tracings of the canals were made from preinstrumentation pictures of the cross section. The canals were prepared using a step-back technique with stainless steel K file(group 1), Profile .04 taper rotary file(group 2) and GT rotary file(group 3). Tracings of the prepared canals were made from postinstrumentation picture. Canal centring ratio. amount of transportation, area of dentin removed and shape of canal were measured and statistically were evaluated with Student-Newman-Keuls test using Sigma Stat(Jandel Scientific Software, USA). The results were as followings : 1 Amount of transportation of group 2 was the lowest at apical part, but there was no statistical difference. The direction of transportation was the outside of curvature at apical part. 2. Centering ratio at the apical part of group 1 was the highest, and there was statistical differences between apical and middle part, apical and coronal part(p<0.05). Centering ratio at the middle part of group 3 was the lowest, and there was statistical difference between apical and middle part(p<0.05). Centering ratio of group 2 was the lowest at apical part, but there was no statistical difference. 3. Amount of dentin removed of group 1 was the highest at coronal, middle and apical part among three groups, and there was statistical difference(p<0.05). 4. The majority of the cross-sectioned canal shape after instrumentation were irregular at coronal, middle and apical part. But there are more number of round shaped canals at group 3 than other group.

Procedural errors detected by cone beam tomography in cases with indication for retreatment: in vivo cross-sectional study

  • Henry Paul Valverde Haro;Carmen Rosa Garcia Rupaya;Flavio R. F. Alves
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.3
    • /
    • pp.26.1-26.14
    • /
    • 2024
  • Objectives: This study aimed to investigate the frequency and type of endodontic procedural errors in cases indicated for retreatment through cone-beam computed tomography (CBCT) analysis. Materials and Methods: The sample consisted of 96 CBCT scans, encompassing 122 permanent teeth with fully formed roots. Errors included perforation, instrument fracture, canal transportation, missed canals, and inadequate apical limit of filling. Additionally, potential risk factors were analyzed and subjected to statistical modeling. Results: The most frequent procedural error observed was the inadequate apical limit of filling, followed by canal transportation, perforation, missed canal, and instrument fracture. Statistically significant associations were identified between various procedural errors and specific factors. These include canal transportation and root canal wall, with the buccal wall being the most commonly affected; missed canal and tooth type, particularly the palatine and second mesiobuccal canal canals; inadequate apical limit of filling and root curvature, showing a higher deviation to the mesial direction in severely curved canals; inadequate apical limit of filling and the presence of calcifications, with underfilling being the most frequent; canal transportation and periapical lesion, notably with deviation to the buccal direction; and the direction of perforation and periapical lesion, most frequently occurring to buccal direction. Conclusions: CBCT emerges as a valuable tool in identifying procedural errors and associated factors, crucial for their prevention and management.

EVALUATION OF ROOT CANAL TRANSPORTATION AND REMAINING DENTIN/CEMENTUM THICKNESS FOLLOWING HAND AND ULTRASONIC INSTRUMENTATION (근관형성 방법에 따른 근관변위와 잔존치질의 두께에 관한 연구)

  • Seo, Byoung-Kon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.399-412
    • /
    • 1992
  • The purpose of this study was to evaluate the root canal transportation and remaining dentin / cementum thickness after using hand and ultrasonic instrumentation in the curved mesial root canals of extracted human mandibular molars. Fourty - six clear polyether blocks were made and randomly divided into two groups: hand instrumentation group with K - Flex files and ultrasonic instrumentation group with Suprasson SP unit. All root canals were instrumented to a size corresponding to a # 30 K - Flex file 1mm short from the radiographic apex. The roots were then sectioned perpendicular to the long axis so the apical and middle third could be evaluated with the Zoom stereomicroscope. The results were as follows : 1. In the total amount of removed dentin at middle third level, there was not significant difference between the hand instrumentation and ultrasonic instrumentation (P>0.05). 2. In the total amount of removed dentin at apical third level, there was more removed by the ultrasonic instrumentation than hand instrumentation(P<0.005). 3. In the transportation width, there was not significant difference between the two groups at both sectioned levels(P>0.05). 4. It was suggested that the canal was transported distally at middle third level and mesially at apical third level by booth techniques.

  • PDF

Effect of repetitive pecking at working length for glide path preparation using G-file

  • Ha, Jung-Hong;Jeon, Hyo-Jin;Abed, Rashid El;Chang, Seok-Woo;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Objectives: Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. Materials and Methods: The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10). Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0) and 1 mm level (D1) under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05). Results: The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05). Conclusions: Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.

Evaluation of apical canal shapes produced sequentially during instrumentation with stainless steel hand and Ni-Ti rotary instruments using Micro-computed tomography (Stainless steel hand file과 Ni-Ti rotary file을 이용한 근관 형성시 근단부 근관 형태의 순차적 변화에 대한 평가)

  • Lee, Woo-Jin;Lee, Jeong-Ho;Chun, Kyung-A;Seo, Min-Seock;Yoo, Yeon-Jee;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.231-237
    • /
    • 2011
  • Objectives: The purpose of this study was to determine the optimal master apical file size with minimal transportation and optimal efficiency in removing infected dentin. We evaluated the transportation of the canal center and the change in untouched areas after sequential preparation with a #25 to #40 file using 3 different instruments: stainless steel K-type (SS K-file) hand file, ProFile and LightSpeed using microcomputed tomography (MCT). Materials and Methods: Thirty extracted human mandibular molars with separated orifices and apical foramens on mesial canals were used. Teeth were randomly divided into three groups: SS K-file, Profile, LightSpeed and the root canals were instrumented using corresponding instruments from #20 to #40. All teeth were scanned with MCT before and after instrumentation. Cross section images were used to evaluate canal transportation and untouched area at 1-, 2-, 3-, and 5- mm level from the apex. Data were statistically analyzed according to 'repeated nested design' and Mann-Whitney test (p = 0.05). Results: In SS K-file group, canal transportation was significantly increased over #30 instrument. In the ProFile group, canal transportation was significantly increased after preparation with the #40 instrument at the 1- and 2- mm levels. LightSpeed group showed better centering ability than ProFile group after preparation with the #40 instrument at the 1 and 2 mm levels. Conclusions: SS K-file, Profile, and LightSpeed showed differences in the degree of apical transportation depending on the size of the master apical file.

A STUDY ON TRANSPORTATION OF APICAL FORAMEN AFTER OVERINSTRUMENTATION BY PROFILE® ;PROTAPERTM AND K3TM IN SIMULATED CANALS WITH DIFFERENT CURVATURES (ProFile®, ProTaperTM 및 K3TM Ni-Ti 파일의 과기구 조작이 치근단공 변위에 미치는 영향)

  • Yang, Hyun;Yang, In-Seok;Hwang, Yun-Chann;Hwang, In-Man;Yoon, Suk-Ja;Kim, Won-Jae;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • This study was done to evaluate transportation of the apical foramen after 0.5 mm overinstrumentation by ProFile, ProTaper and $K^3$ in simulated resin root canal. Sixty simulated resin root canal with a curvature of J and S-shape were divided into two groups. Each group consisted of three subgroups with 10 blocks according to the instruments used: $ProFile^{(R)},\;ProTaper^{TM},\;and\;K^{3TM}$. Simulated resin root canal was prepared by ProFile, ProTaper and $K^3$ with 300 rpm by the crown-down preparation technique. Pre- and post-instrumentation apical foramen images were overlapped and recorded with Image-analyzing microscope 100X (Camcope, Sometech Inc, Korea). The amounts of difference in width and dimension on overlapped images were measured after reference points were determined by Image Analysis program ($Image-Pro^{(R)}$ Express, Media Cybernetic, USA). Data were analyzed using Kruskal-Wallis and Mann-Whitney U-test. The results suggest that ProFile showed significantly less canal transportation and maintained original apical foramen shape better than $K^3$ and ProTaper.

Micro-computed tomographic assessment of the shaping ability of the One Curve, One Shape, and ProTaper Next nickel-titanium rotary systems

  • Tufenkci, Pelin;Orhan, Kaan;Celikten, Berkan;Bilecenoglu, Burak;Gur, Gurkan;Sevimay, Semra
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.30.1-30.11
    • /
    • 2020
  • Objectives: This micro-computed tomographic (CT) study aimed to compare the shaping abilities of ProTaper Next (PTN), One Shape (OS), and One Curve (OC) files in 3-dimensionally (3D)-printed mandibular molars. Materials and Methods: In order to ensure standardization, 3D-printed mandibular molars with a consistent mesiobuccal canal curvature (45°) were used in the present study (n = 18). Specimens were instrumented with the OC, OS, or PTN files. The teeth were scanned pre- and post-instrumentation using micro-CT to detect changes of the canal volume and surface area, as well as to quantify transportation of the canals after instrumentation. Two-way analysis of variance was used for statistical comparisons. Results: No statistically significant differences were found between the OC and OS groups in the changes of the canal volume and surface area before and after instrumentation (p > 0.05). The OC files showed significantly less transportation than the OS or PTN systems for the apical section (p < 0.05). In a comparison of the systems, similar values were found at the coronal and middle levels, without any significant differences (p > 0.05). Conclusions: These 3 instrumentation systems showed similar shaping abilities, although the OC file achieved a lesser extent of transportation in the apical zone than the OS and PTN files. All 3 file systems were confirmed to be safe for use in mandibular mesial canals.

Evaluation of apical canal shapes produced sequentially during instrumentation with stainless steel hand and Ni-Ti rotary instruments using micro-computed tomography

  • Lee, Woo-Jin;Baek, Seung-Ho;Bae, Kwang-Sik
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.597-598
    • /
    • 2003
  • I. Objectives Endodontic success depends on thoroughly cleaned and completely obturated root canal system. Effective cleaning and obturation will be achieved by well shaped canal. Numerous methodologies evaluating the efficacy and safety of canal preparation has been developed and the use of micro-computed tomography(MCT) in endodontic research is one of the latest innovations. This scientific tools could overcome the inherent limitations of other methodologies, and possesses the ability to visualize morphological characteristics in a detailed and accurate manner without destruction of the tooth and offers reproducible data in all three dimensions. The purpose of this study was to determine the optimal master apical file size with less transportation and more efficiency in removing the infected dentin. For this purpose we evaluated the transportation of canal center and change of untouched area after preparation sequentially from #25 file through #40 file with 3 different instruments:Stainless steel(SS) K-type hand instruments(MANI, Japan), ProFile.04 instruments (Dentply Tulsa Dental, USA) and Lightspeed instruments(Lightspeed Technology, San Antonio, USA) using micro-computed tomography.(omitted)

  • PDF

Root canal volume change and transportation by Vortex Blue, ProTaper Next, and ProTaper Universal in curved root canals

  • Park, Hyun-Jin;Seo, Min-Seock;Moon, Young-Mi
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2018
  • Objectives: The aim of this study was to compare root canal volume change and canal transportation by Vortex Blue (VB; Dentsply Tulsa Dental Specialties), ProTaper Next (PTN; Dentsply Maillefer), and ProTaper Universal (PTU; Dentsply Maillefer) nickel-titanium rotary files in curved root canals. Materials and Methods: Thirty canals with $20^{\circ}-45^{\circ}$ of curvature from extracted human molars were used. Root canal instrumentation was performed with VB, PTN, and PTU files up to #30.06, X3, and F3, respectively. Changes in root canal volume before and after the instrumentation, and the amount and direction of canal transportation at 1, 3, and 5 mm from the root apex were measured by using micro-computed tomography. Data of canal volume change were statistically analyzed using one-way analysis of variance and Tukey test, while data of amount and direction of transportation were analyzed using Kruskal-Wallis and Mann-Whitney U test. Results: There were no significant differences among 3 groups in terms of canal volume change (p > 0.05). For the amount of transportation, PTN showed significantly less transportation than PTU at 3 mm level (p = 0.005). VB files showed no significant difference in canal transportation at all 3 levels with either PTN or PTU files. Also, VB files showed unique inward transportation tendency in the apical area. Conclusions: Other than PTN produced less amount of transportation than PTU at 3 mm level, all 3 file systems showed similar level of canal volume change and transportation, and VB file system could prepare the curved canals without significant shaping errors.