• Title/Summary/Keyword: Apical membrane dynamics

Search Result 2, Processing Time 0.022 seconds

Transepithelial transport and dynamic changes on apical membrane area of turtle bladder (Turtle Bladder 정단세포막(丁端細胞膜)의 역동적(力動的) 변화와 상피수송(上皮輸送)에 관하여)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 1993
  • The present study was carried out to analyze the evidence of membrane recycling, and the regulation of cellular transport by dynamic changes in apical membrane area that functionally interacts with the number of cytoplasmic vesicles. Under scanning electron micrographs, turtle bladder mucosa contain three main type of cells; granular cells and carbonic anhydrase (CA)-rich cells, deviding into a and b type of epithelial cell. The granular cell is the majority cell type of the mucosa comprising 80% of the total cell number. The remaining 20% of the cells are characteristically rich in carbonic anhydrase. Uptake of HRP was detected in the most vacuoles or tubulovesicles in both type of CA-rich cells in the turtle bladder, indicating that the part of plasma membrane was internalized in the apical cytoplasmic vacuoles. It seems quite likely that CA-rich cells possess intracellular vesicles carrying proton pumps which are recycling back to the apical plasma membrane. In turtle bladder, the granular cells actively secrete large quantities of mucin and other proteins by an exocytotic mechanism in an apparently constitutive fashion. The possibility that bladder epithelial cells secrete mucin via a regulated secretory pathway has not been rigorously examined and much is still to be determined about these issues from this cell type.

  • PDF

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.