• Title/Summary/Keyword: Aperture-stop

Search Result 23, Processing Time 0.028 seconds

Optical System Design for Thermal Target Recognition by Spiral Scanning [TRSS]

  • Kim, Jai-Soon;Yoon, Jin-Kyung;Lee, Ho-Chan;Lee, Jai-Hyung;Kim, Hye-Kyung;Lee, Seung-Churl;Ahn, Keun-Ok
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.174-181
    • /
    • 2004
  • Various kinds of systems, that can do target recognition and position detection simultaneously by using infrared sensing detectors, have been developed. In this paper, the detection system TRSS (Thermal target Recognition by Spiral Scanning) adopts linear array shaped uncooled IR detector and uses spiral type fast scanning method for relative position detection of target objects, which radiate an IR region wavelength spectrum. It can detect thermal energy radiating from a 9 m-size target object as far as 200 m distance. And the maximum field of a detector is fully filled with the same size of target object at the minimum approaching distance 50 m. We investigate two types of lens systems. One is a singlet lens and the other is a doublet lens system. Every system includes one aspheric surface and free positioned aperture stop. Many designs of F/1.5 system with ${\pm}5.2^{\circ}$ field at the Efl=20, 30 mm conditions for single element and double elements lens system respectively are compared in their resolution performance [MTF] according to the aspheric surface and stop position changing on their optimization process. Optimum design is established including mechanical boundary conditions and manufacturing considerations.

The Analysis of Dual Resonant Iris for Designing Waveguide Band-Pass Filter (대역 통과 도파관 여파기 설계를 위한 이중 공진 아이리스 해석)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.904-911
    • /
    • 2011
  • This paper deals with transmission characteristics of a new dual resonant structure for designing waveguide band-pass filter. The structure which has a pass-band between two adjacent stop-bands in a single body consists of circular ridged aperture and four armed conducting patch. The dual resonant behavior of the structure can be represented by a combination of LC series and parallel resonant circuits. Also these resonant properties can be easily controlled by varying the geometry of the aperture and four armed conducting patch. Actually, the structure is fabricated on the microstrip substrate by use of etching technique so that it is formed an iris type resonator which can be easily put into the transverse plane of the waveguide. We use WR-90 standard waveguide, adapters, and VNA(vector network analyzer) to measure the resonant characteristics of the structure. It is very useful to design and to improve the cutoff skirts characteristics in the waveguide band-pass filter design area.

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Alternative Description for Gaussian Image Plane

  • Kim, Byongoh;Lee, Sukmock
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.144-148
    • /
    • 2015
  • An alternative description for the Gaussian image plane (GIP) of an optical system for a given object is presented, which applies to both aberration-free and non-aberration-free systems. We extend the definition of transverse magnification (TM) to the image plane (IP) displaced from the GIP and find that the TM depends linearly on the locations of both an aperture stop placed in front of the system and the IP. Hence, we redefine the GIP as the location at which the slope of the TM variance changes sign. The definition is deterministic and self-consistent and, therefore, no other parameters or measurements are needed. The derivation of this definition using a set of paraxial ray tracings and supporting experimental data for a thick bi-convex lens system is presented.

Fast Measurement of Eyebox and Field of View (FOV) of Virtual and Augmented Reality Devices Using the Ray Trajectories Extending from Positions on Virtual Image

  • Hong, Hyungki
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.336-344
    • /
    • 2020
  • Exact optical characterization of virtual and augmented reality devices using conventional luminance measuring methods is a time-consuming process. A new measurement method is proposed to estimate in a relatively short time the boundary of ray trajectories emitting from a specific position on a virtual images. It is assumed that the virtual image can be modeled to be formed in front of one's eyes and seen through some optical aperture (field stop) that limits the field of view. Circular and rectangular shaped virtual images were investigated. From the estimated ray boundary, optical characteristics, such as the viewing direction and three dimensional range inside which a eye can observe the specified positions of the virtual image, were derived. The proposed method can provide useful data for avoiding the unnecessary measurements required for the previously reported method. Therefore, this method can be complementary to the previously reported method for reducing the whole measurement time of optical characteristics.

Word-boundary and rate effects on upper and lower lip movements in the articulation of the bilabial stop /p/ in Korean

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • In this study, we examined how the upper and lower lips articulate to produce labial /p/. Using electromagnetic midsagittal articulography, we collected flesh-point tracking movement data from eight native speakers of Seoul Korean (five females and three males). Individual articulatory movements in /p/ were examined in terms of minimum vertical upper lip position, maximum vertical lower lip position, and corresponding vertical upper lip position aligned with maximum vertical lower lip position. Using linear mixed-effect models, we tested two factors (word boundary [across-word vs. within-word] and speech rate [comfortable vs. fast]) and their interaction, considering subjects as random effects. The results are summarized as follows. First, maximum lower lip position varied with different word boundaries and speech rates, but no interaction was detected. In particular, maximum lower lip position was lower (e.g., less constricted or more reduced) in fast rate condition and across-word boundary condition. Second, minimum lower lip position, as well as lower lip position, measured at the time of maximum lower lip position only varied with different word boundaries, showing that they were consistently lower in across-word condition. We provide further empirical evidence of lower lip movement sensitive to both different word boundaries (e.g., linguistic factor) and speech rates (e.g., paralinguistic factor); this supports the traditional idea that the lower lip is an actively moving articulator. The sensitivity of upper lip movement is also observed with different word boundaries; this counters the traditional idea that the upper lip is the target area, which presupposes immobility. Taken together, the lip aperture gesture is a good indicator that takes into account upper and lower lip vertical movements, compared to the traditional approach that distinguishes a movable articulator from target place. Respective of different speech rates, the results of the present study patterned with cross-linguistic lenition-related allophonic variation, which is known to be more sensitive to fast rate.

PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3 (과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계)

  • Yuk, I.S.;Jin, H.;Lee, S.;Park, Y.S.;Lee, D.H.;Nam, U.W.;Park, J.H.;Han, W.Y.;Lee, J.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

Some Notes on Articulatory Correlates of Three-way Bilabial Stop Contrast in /Ca/ Context in Korean: An Electromagnetic Articulography (EMA) Study

  • Son, Min-Jung;Cho, Tae-Hong
    • Phonetics and Speech Sciences
    • /
    • v.2 no.4
    • /
    • pp.119-127
    • /
    • 2010
  • Recently, we have launched a large-scale articulatory study to investigate how the three-way contrastive stops (i.e., lenis, fortis, and aspirated) in Korean are kinematically expressed (i.e., in terms of articulatory movement characteristics) in various contexts, using a magnetometer (Electromagnetic Articulography). In this paper, we report some preliminary results about how the three-way bilabial series /p,$p^h,p^*$/ produced in /Ca/ context in isolation are kinematically characterized not only during the lip closure but also during the following vocalic articulation. Some important notes could be made from the results. First, the degree of lip constriction (as measured by the lip aperture between the upper and lower lips) was smaller for the lenis /p/ and larger for the fortis/aspirated /$p^*,p^h$/, showing a two-way distinction during the closure. Second, the tongue lowering for the following vowel was more extreme after the lenis /p/ than after the fortis/aspirated /$p^*,p^h$/. Regarding this vocalic articulatory difference in the tongue height, we discussed the possibility that the articulatory tension associated with the fortis/aspirated stops is further reflected in the lingual vocalic movement maintaining the tongue position to a certain level for the following vowel /a/, while the lenis consonant does not impose such articulatory constraints, resulting in more tongue lowering. Finally, the temporal relationship between the release of the stop closure and the lowest tongue position of the following vowel remained constant, suggesting that CV coordination is invariantly maintained across the consonant type. This pattern was interpreted as supporting the view that the consonant and vowel gestures are coordinated in much the same way across languages.

  • PDF

Empirical Modeling of Lens Distortion in Change of Focal Length (초점거리 변화에 따른 렌즈 왜곡의 경험적 모델링)

  • Jeong, Seong-Su;Woo, Sun-Kyu;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.93-100
    • /
    • 2008
  • The parameters of lens such as focal length, focus, and aperture stop changes while shooting the scenes with zoom lens. Especially, zooming action dramatically changes the geometry of lens system that causes significant change of lens model. We investigated how the lens model changes while zooming in general shooting condition. Each parameters of lens model was estimated and checked whether they can be modeled well in the condition of auto-controlling focus, aperture and vibration reduction. In order to do this, calibration images were taken, modeled in different fecal length setting. And changing patterns of models were inspected to find out if there is some elements that have some particular pattern in changing with respect to focal length. The result showed us that although we didn't control the focus and aperture setting, there's specific changing patterns in radial and do-centering distortion. Especially, the strong linear correlation was found between coefficient of $r^2$ and focal length. It is expected that many parts of distortion can be eliminated without additional self calibration even if zoom operation is done when shooting the scenes if we know its fecal length and model of this coefficient.

Optical Design of a Wide-field Off-axis Two-mirror System without Ray Obstruction (광선의 차폐가 없는 광시야 비축 2반사광학계 설계)

  • Oh, Hye-Jin;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.263-272
    • /
    • 2017
  • To design a wide-field optical system, the inverted telephoto configuration, which has a negative front group and a positive rear group, is popular. For a two-mirror system, the inverse Cassegrain system has the inverted telephoto configuration, but the inverse Cassegrain system with the conventional, axially symmetric configuration shows severe field screening and ray obstruction. To avoid these problems, we put the aperture stop on the secondary mirror of an inverse Cassegrain system to increase field of view, and designed a wide-field off-axis two-mirror system which only uses the off-axis field, without ray obstruction.