• Title/Summary/Keyword: Aperture near-field scanning optical microscope

Search Result 8, Processing Time 0.021 seconds

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Multiplexed, Stack-Wise, and Parallel Recording of Near-Field Binary Holograms (근접장 이진 홀로그램의 다중화, 다층화 및 병렬 저장)

  • Kim, Gyeong-Yeom;Gang, Jin-Gu;Lee, Byeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.382-389
    • /
    • 2002
  • We present experimental results on the multiplexed and stack-wise recording of near-field holograms. Experiments on angular multiplexing show that the angular selectivity of near-field hologram is better than that of the conventional hologram. Experiments on stack-wise recording prove that near-fields originated from sub-diffraction-limit-size objects could be stored in a photorefractive crystal at 2mm apart from the crystal surface. In addition, to improve the data access and transfer time, a silicon nano-aperture array was introduced and applied to the recording of near-field holograms.

Resonant Transmission of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 가진 직사각형 도파관 탐침의 공진 투과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1198-1204
    • /
    • 2013
  • As a microwave near field probe for near field scanning optical microscope(NSOM) system, H-shaped(ridge type) small aperture is proposed and its performances from the viewpoints of the transmission efficiency(transmission cross section) and spatial confinement(beam spot size) are compared with those of the previous narrow rectangular aperture type. While the transmission efficiencies are comparable to each other for the two structures, the transmitted beam spot size for the proposed H-shaped aperture is much smaller than that for the previous rectangular aperture. This strong point of the H-shaped aperture is expected to significantly improve near-field optical applications such as optical data storage, nanolithography and nanomicroscopy. It is also observed that the transmission efficiency can be improved if the coupling aperture is implemented in the type of the transmission cavity.

Characteristics of Nanolithography Process on Polymer Thin-film using Near-field Scanning Optical Microscope (근접장현미경을 이용한 폴리머박막 나노리쏘그라피 공정의 특성분석)

  • 권상진;김필규;장원석;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.590-595
    • /
    • 2004
  • The shape and size variations of the nanopatterns produced on a positive photoresist using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture( $P_{in}$ ), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at $P_{in}$ =1.2$\mu$W and V=12$\mu$m/. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage using azopolymer is discussed at the end.

  • PDF

Characteristics of nanolithograpy process on polymer thin-film using near-field scanning optical microscope with a He-Cd laser (He-Cd 레이저와 근접장현미경을 이용한 폴리머박막 나노리소그라피 공정의 특성분석)

  • Kwon S. J.;Kim P. K.;Chun C. M.;Kim D. Y.;Chang W. S.;Jeong S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.37-46
    • /
    • 2004
  • The shape and size variations of the nanopatterns produced on a polymer film using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture($P_{in}$), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at $P_{in}=1.2{\mu}W\;and\;V=12{\mu}m/s$. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage is discussed.

  • PDF

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

  • Kwon Sangjin;Kim Pilgyu;Jeong Sungho;Chang Wonseok;Chun Chaemin;Kim Dong-Yu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

Manufacture of Optical fiber probe Using $CO_2$ Laser Heating Pulling Method ($CO_2$ Laser Heating Pulling Method를 이용한 광섬유 탐침 제작)

  • Shin, Soo-Yong;Park, June-Do;HwangBo, Seung;Kang, Yong-Chel
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.468-470
    • /
    • 2005
  • 본 연구에서는 NSOM(Near-field Scanning Optical Microscope)에서 정밀도의 중요한 요소로 작용하는 100 ~ 200nm Scale의 Optical aperture를 제작하기 위해 Optical Fiber를 이용하여 $CO_2$ Laser Heating Pulling Method에 의하여 제작하고자 한다. Heating Pulling Method 에서 Fiber Tip의 정밀도 및 제작 재현성에 영향을 미치는 중요한 기존의 여러 Fiber Tip 구현방법 중 본 연구에서는 Pulse Width[$PW_{(SEC)}$] 와 Pulling Force 두 요소에 있어서 상호관계를 연구하였으며, 연구 결과 두 변수간의 최적화된 파라미터인 PW 0.07 ~ $0.10_{(SEC)}$ 와 Pulling force 0.2 ~ 0.81b의 구간에서 error율이 최소화되는 범위를 찾을 수 있었고, 그 결과 최적의 상태는 $0.08_{(SEC)}$와 0.21b에서 팁들은 첨예화 되었고 95% 이상의 재현성 및 신뢰성을 얻을 수 있었다.

  • PDF