• Title/Summary/Keyword: Aperture Filter

Search Result 67, Processing Time 0.023 seconds

Harminic Suppression of Band Pass Filter Using Photonic Band Gap Structure (PBG 구조를 이용한 대역통과 여파기 고조파 억제에 관한 연구)

  • Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • A bandpass filter has been designed by employing the PBG structure and the aperture on the ground together in this paper. The harmonics of band pass filter have been suppressed by employing the PBG structure and the bandwidth of it has been broadened by using the aperture on the ground. The three kinds of PBG structures has been combined to suppress the harmonics of the filter The center frequency of filter is 2.2 GHz and the bandwidth has been increased from $40\%$ by the aperture and all harmonics were suppressed about 35dBc by the PBG. The insertion loss has been reduced 3.0dB to 2.6dB.

Aperture Cut-off Filter for Reduction of Electromagnetic Field Penetration through a Slot in Conducting Screens (도체평판의 슬롯 침투 전자파 저감을 위한 개구면 차단필터)

  • Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1201-1211
    • /
    • 2014
  • The purpose of this paper is to present the aperture cut-off filter for reduction of electromagnetic field penetration through a slot in conducting screen. The reduction characteristics of electric field penetration by the aperture cut-off filter are considered. In order to establish the concept of the aperture cut-off filter, the integral equation on the slot aperture field distribution is derived and solved by method of moments, and the reduction characteristics of penetration electric fields for the incident plane wave are calculated. The numerical results showed that the aperture cut-off filter for reduction of electric field penetration through the slot can be realized. To check the validity of the concept of an aperture cut-off filter and the theoretical analysis, the calculated electric field penetration of the metallic wall with narrow slot were compared with the experimental results.

A Miniaturized Aperture-Coupled Multilayer Hairpin Bandpass Filter

  • Moon, Han-Ul;Choi, Seung-Un;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we introduce a coupling, which is achieved through the aperture instead of the conventional edge coupling, so that the bandpass filter is reduced less than half in size compared to conventional planar type. The resulting filter configuration has a near two-fold symmetry, where the aperture coupling is used in the middle of the coupling stages. We designed a bandpass filter using two tapped hairpin resonators, of which the order becomes four. The designed bandpass filter has the size of $8.9{\times}18.3\;mm$. It has the return loss better than 17dB and the insertion loss of less than 5 dB in overall passband. The measured results show good agreements with simulated ones.

Design of Hairpin-Comb Bandpass Filter using Ground Aperture (접지면 어퍼쳐를 사용한 Hairpin-Comb 대역통과 여파기 설계)

  • 이진택;박정훈;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • This paper presents hairpin-comb bandpass filter using ground aperture. Hairpin-comb resonator maintains the weak coupling though the space between two resonators is very small. This has the good merit that the entire filter size is small for narrowband bandpass filter. The coupling between two hairpin-comb resonators so very weak that can't be applicable to general microstrip. We compensate the coupling by using ground aperture. It makes the hairpin-comb filter possible that can be applicable to general microstrip. Also it has the good merit which adjusts the bandwidth by changing the size of aperture without changing the space. In this paper, we fabricate the bandpass filter, which has 1.78 GHz center frequency and 62 MHz (3.5%) fractional bandwidth.

Harmonic Suppression and Broadening Bandwidth of Band Pass Filter Using Aperture and Photonic Band Gap Structure

  • Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.208-212
    • /
    • 2005
  • In this paper, we introduced a band-pass filter employed the PBG structure and the aperture on the ground together. The harmonics of band pass filter have been suppressed by employing the PBG structure and the bandwidth of it has been broadened by using the aperture on the ground. The designed PBG cells have three different sizes. The largest cells, the middle cells, and the smallest cells have suppressed the multiple of second harmonics, the multiple of third harmonics, and the multiple of fifth harmonics, respectively. The center frequency has been 2.18 GHz. The bandwidth has been increased from 230 MHz up to 310 MHz(80 MHz, about $35\%$) by the aperture and the ripple characteristics in passband have been improved and the harmonic frequencies have been suppressed about 30 dB by the PBG.

Improvement of Band Pass Filter Using PBG and Aperture (Aperture와 PBG를 적용한 대역통과 여파기 성능개선에 관한 연구)

  • 이승재;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.847-852
    • /
    • 2003
  • Apertures and PBG(Photonic Band Gap) has been employed on the ground plane in the coupled line filter simultaneously. In order to observe the maximum bandwidth, we used the line gap 0.2mm which is can be made in our lab. Band-pass filter type is four-stage coupled strip line filter. Teflon has been used for the substrate ($\varepsilon$$\sub$r/=3.2). The center frequency and the bandwidth are 2.18GHz and 230MHz, respectively. The bandwidth is broaden from 230MHz to 310MHz (80Mhz, about 34.7%) by aperture effect and harmonic frequencies are suppressed to 20-30dB by PBG effect. So the harmonic frequencies have been suppressed by the PBG effect and the bandwidth are broaden by aperture effect.

Design and Experiment of a Miniaturized Waveguide Band-Pass Filter Using L-Type Inverter and Small Resonant Aperture (L형 아이리스와 투과 공진 개구를 이용한 소형화된 도파관 여파기 설계 및 실험)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.457-467
    • /
    • 2012
  • In this paper, a miniaturized band-pass filter structure, which comprises the irises of small resonant aperture and L-type irises inverter, is proposed. Ridged circular aperture iris is chosen as an elementary resonator. L-type iris which is placed between two adjacent elementary resonators is newly proposed as impedance inverter in order to reduce longitudinal length of the proposed filter. The fabricated minimized filter has 400 MHz bandwidth at the 10 GHz center frequency and the whole size is reduced to 70 % in length compared to conventional filter.

Optimization Design of Non-Integer Decimation Filter for Compressing Satellite Synthetic Aperture Radar On-board Data (위성 탑재 영상레이다의 온보드 데이터 압축을 위한 비정수배 데시메이션 필터 최적화 설계 기법)

  • Kang, Tae-Woong;Lee, Hyon-Ik;Lee, Young-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.475-481
    • /
    • 2021
  • The on-board processor of satellite Synthetic Aperture Radar(SAR) digitizes the back-scattered echoes and transmits them to the ground. As satellite SAR image of various operating conditions including broadband and high resolution is required, an enormous amount of SAR data is generated. Decimation filter is used for data compression to improve the transmission efficiency of these data. Decimation filter is implemented with the FIR(Finite Impulse Response) filter and here, the decimation ratio and tap length are constrained by resource requirements of FPGA used for implementation. This paper suggests to use a non-integer ratio decimation filter in order to optimize the data transmission efficiency. Also, it proposes a filter design method that remarkably reduces the resource constraints of the FPGA in-use via applying a polyphase filter structure. The required resources for implementing the proposed filter is analysed in this paper.

Design of Multi-Layer Dual-Band Bandpass Filter Using Aperture-Coupling (개구 결합을 이용한 적층형 이중 대역 대역 통과 여파기 설계)

  • Shin, Bong-Geol;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2012
  • In this paper, a multi-layer dual-band bandpass filter using aperture-coupling is proposed. Two coupling paths are formed with the two apertures which exist between two dual-mode resonators. The coupling coefficients can be adjusted without changing the shape of resonators. The bandwidth of the second passband can be adjusted without affecting the bandwidth of the first passband using the size of an aperture between stubs of the dual-mode resonator. The aperture coupling mechanism is theoretically analysed. The dual-mode bandpass filter for the 2.4 GHz WLAN, 3.5 GHz WiMax was designed and fabricated. The fabricated filter shows centered 2.45 GHz and 3.5 GHz with 9 % and 8 % of the bandwidth.

Design of a digital filter with variable characteristics for a luminance signal processing of digirtal TV (가변 특성을 갖는 디지털 TV 휘도신호 처리용 디지털 필터 설계)

  • 왕종현;이해정;유영갑;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.67-79
    • /
    • 1996
  • This paper presents a composite luminance signal processing system for NTSC, PAL and SECAM standards. Eaxh of the three standards employs its own specifications of subcarmier bandwidth and luminance signal waveform. The proposed system, compatible to the specifications of the three standard and B/W TV, implements variable freqneucy characteristics by controlling filter coefficients. The major features of the system are a luminance/chroma separation unit and an aperture compensation unit. The luminance/chroma separation unit employes a notch filter selection a trap freqneyc to atenuate unwanted color signals in luminance signal bands. The aperture compensation unit comprises two subunits, to provide clear color definition for each of the three standards: a primary compensation circuit and a variable compensation circuits. The proposed system yields a 40 dB gain from the chroma/luminance separation and a 10 dB gain from the aperture compensation unit.

  • PDF