• Title/Summary/Keyword: Apatite

Search Result 281, Processing Time 0.026 seconds

Petrological Characteristics and Origin of Volcaniclasts within the Massive Tuff Breccia Formation from Dokdo Island, Korea (독도 괴상 응회질 각력암층에서 나타나는 화산암편의 암석학적 특성과 기원)

  • Shim, Sung-Ho;Im, Ji-Hyeon;Jang, Yun-Deuk;Choo, Chang-Oh;Park, Byeong-Jun;Kim, Jung-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • Dokdo Island, Korea, is located in the East Sea belonging to back arc basin. In this study we examined petrology and geochemistry of massive tuffaceous breccia (MTB) from Dongdo (Eastern islet) and Seodo(Western islet), the two largest islands of Dokdo. Field studies and chemical analysis distinguish the MTB in Dongdo and Seodo. The Dongdo MTB (DMTB) is exposed up to 50 m on the ocean cliff and it has dominant basalt and trachybasalt with moderate amount of trachyte and scoria. On the other hand, Seodo MTB (SMTB), which is preserved between trachyte dike and trachyandesite, is composed of roughly equal amounts of basalt, trachybasalt and trachyte. The location of the islets were related to the source vent having in contact with underlying trachyte lava and differential pyroclastic deposits made them different characteristics. According to trace element analysis of trachytic volcanic clasts, the Ba concentration ranges from 66 to 103 ppm and Sr varies from 44 to 56 ppm in DMTB. However, Br and Sr in SMTB correspondingly showed relatively wide ranges: Br 785-1259 ppm and Sr 466-1230 ppm. These differential trends between DMTB and SMTB, along with the difference in P and Ti, indicate that the crystallization of alkali feldspar, feldspathoid, biotite, apatite and titanium took place differently. Nevertheless, DMTB and SMTB are similar in REE patterns and they are correspondingly characterized by high LREE, low HREE and similar $(La/Yb)_N$ values with 23.9-40.2 in DMTB and 27.4-32.9 in SMTB. These patterns suggest that Dongdo and Seodo might be originated from coeval magma suites. Dokdo island shows high concentrations of Ba, K and Rb. These signatures mark a result attributed to the mantle upwelling because the magma derived from the asthenosphere was metasomatized with subduction-related fluids.

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area (대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성)

  • Jeong, Chan Ho;Ryu, Kun Seok;Kim, Moon Su;Kim, Tae Sung;Han, Jin Suk;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

독창적 아이디어에서 창조적 혁신까지 : 인공씨감자 기술혁신 성공사례 분석

  • 현재호
    • Proceedings of the Technology Innovation Conference
    • /
    • 1997.07a
    • /
    • pp.222-223
    • /
    • 1997
  • By analyzing the successful innovation case of potato microtuber mass production technology, a representative case of technology-push type creative innovation in an imitation oriented research culture, this paper attempts to figure out conceptual model of creative innovation that is initiated by the public laboratories in catching-up country, Stages of creative innovation can be divided into the internal R&D stage and the external commercialization stage. Success of the internal R&D stage depended on autonomy to secure creative research idea and commitment of individual researchers. Psychological pressure evoked from sportlights of mass media and commitment of sponsor increased the intensity of research efforts of the researcher Recognition of research problem and its significance was intensified by site visits of agricultural fields, and the recognized higher impacts of expected research results and knowledge creation achieved were a fundamental source of self-motivation. In the stage of commercialization stage, various legal, socio-economic, and psychological barriers were confronted. In a catching-up country lacking of experiences of creative innovation, creative innovation process can be regarded as a barrier elimination and cultural revolution process. Among the barriers, psychological refusal of farmers to corn-sized potato seeds was critical, which finally enforced to further researches to enlarge the size of potato seeds. In addition, the researcher has concentrated his research efforts in one specialized research area by getting a series of similar research project funds rather than diversification. It was lucky for him to have a chance to carry out a series of similar researches in one research area during the last 10 years. In getting research funds from government and private companies continuously in one research area, both internal and external promoters played significant roles.

  • PDF

The Effects of Mean Grain Size and Organic Matter Contents in Sediments on the Nutrients and Heavy Metals Concentrations (퇴적물 내 입도와 유기물 함량이 영양염류 및 중금속 농도에 미치는 영향)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Kang, Sung-Won;Jeon, Sang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.923-931
    • /
    • 2005
  • A study was carried out to identify the major causes of sediments pollution in the Paldang Lake in the vicinity of Gyeongan river. Samples from 40 sites were collected and analyzed to characterize the regional distributions of grain size, organic matter contents, and concentrations of T-N, T-P and heavy metals. contaminations. The mean grain size(Mz) ranged from sand type(Mz, $1{\sim}3\;{\phi}$) where Bukhan River and Namhan River converges at a high flow rate to silt type(Mz, $5{\sim}10\;{\phi}$) at the downstream of Gyeongancheon and Paldang lake, reflecting the water circulation in the area. Except sampling point St. 36 near the wetland, the determination coefficient($r^2$) of Mz and organic matter(LOI) was 0.88, showing that more organic matters are concentrated inside finer sediments. The concentrations of T-N and T-P in sediments were higher in the area at which Mz and organic matters are also higher. High concentrations of T-P analyzed in the sediments, ranging from $216{\sim}1,623\;{\mu}g/g$ (Avg. $769\;{\mu}g/g$) could be considered as a critical level. Adsorbed-P and NAI-P, which are easily released to the surrounding environments when physico-chemical characteristics of sediments are changed, was found to be around 20%, which was showed by the result of fractionated-P. Moreover, Principle Component Analysis(PCA), showed that high concentrations of T-N, T-P, organophilic metals (Cd, Cu, Pb, Zn) are distributed in the areas where high organic matter contents and fine grain-sized sediments are found. However, results of $I'_{geo}$ (Geoaccumulation Index) that considers the grain size of sediments showed that heavy metal concentrations in the lake was low enough to be considered as Class 1 indicating the relative degree of pollution was less than zero.

Characteristics of Heavy Minerals in the South East Yellow Sea Mud (SEYSM) and South West Cheju Island Mud (SWCIM) (황해남동니질대와 제주남서니질대 표층퇴적물의 중광물 특성 비교 연구)

  • Koo, Hyo Jin;Cho, Hyen Goo;Lee, Bu Yeong;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.93-102
    • /
    • 2017
  • Heavy mineral provide an important information for sediment provenance as well as a potential submarine mineral resources. We compared the heavy mineral characteristics between Southeastern Yellow Sea Mud (SEYSM) and Southwestern Cheju Island Mud (SWCIM) surface sediments. We separated heavy minerals from 28 surface sediments in each mudbelt, and then carried out stereo-microscopic, field-emission scanning electron microscopic, energy dispersive spectroscopic and electron probe microanalysis to characterize the type, abundance, mineralogical properties and distribution pattern of heavy mineral. Amphibole and epidote, which are two major heavy minerals, account for more than 70% of total heavy minerals. Zircon and sphene contents are more abundant in SEYSM, whereas apatite and rutile contents are more abundant in SWCIM. Monazite only occurs in some area of SEYSM. Sphene and monazite content decrease to the south in SEYSM. Both garnet-zircon index (GZi) and rutile-zircon index (RuZi) are low in SEYSM but high in SWCIM. Amphiboles in SEYSM primarily correspond to hornblende, however those in SWCIM represent variable composition from pargasite, tshermakite, hornblende to tremolite. Garnets in SEYSM have high Mg and low Ca, but those in SWCIM have low Mg with variable Ca. Different heavy mineral characteristics between SEYSM and SWCIM suggests that sediments in each mudbelt have different provenances. Although this study implies that SEYSM sediment may mostly come from nearby Korean western rivers such as the Keum and Han rivers, this study does not suggest any idea of the source area of SWCIM sediment. Further study is needed to interpret the provenance and transportation mechanism of mudbelt sediments through the heavy mineral research for the river sediments flowing into the Yellow Sea and much more marine sediments.

Geochemistry of Heavy Metals and Rare Earth Elements in Core Sediments from the Korea Deep-Sea Environmental Study (KODES)-96 Area, Northeast Equatorial Pacific (한국심해환경연구(KODES) 지역 주상 퇴적물중 금속 및 희토류원소의 지구화학적 특성)

  • Jung, Hoi-Soo;Park, Sung-Hyun;Kim, Dong-Seon;Choi, Man-Sik;Lee, Kyeong-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • To study the vertical variation of heavy metal and Rare Earth Element (REE) contents in deep-sea sediments, eighteen cores were sampled from the Korea Deep-sea Environmental Study (KODES)-96 area in the C-C zone (Clarion-Clipperton fracture zone), northeast equatorial Pacific. Sediment columns can be divided into three units based on sediment colors and geochemical characters; uppermost Unit I with brown color, middle Unit II with pale brown color and smaller Ni/Cu ratio than the ratio in Unit I, and lowermost Unit III with dark (brown) colors and higher contents of Mn, Ni, Cu, and REEs than those in Unit I and II. Unit II can be divided more into two layers of upper Unit IIa and lower Unit IIb. Unit IIb is characterized by high contents of Cu, 3+REEs (REEs except Ce), smectite, and severely deteriorated fossil tests. Unit III can also be divided into two units; upper Unit IIIa with dark brown color, and lower Unit IIIb with black color and enriched Mn and Fe. The KODES area was located near from the East Pacific Rise (EPR) When Unit III Sediments were deposited, considering the hiatus between Unit II and III (Quaternary-Tertiary boundary) and the spreading rate (10 cm/yr) and direction (north southern west) of the Pacific plate from the EPR. High contents of Mn and Fe in Unit IIIb may be related with hydrothermal influence from the EPR. Meanwhile, Unit IIb (about 2~3 Ma) and Unit III (11~30 Ma) layers were probably formed near (or under) the equatorial high productivity zone, and accordingly received a lot of organic materials. As a result, Cu and 3+REEs, closely associated with organic materials, are enriched in smectite and/or Ca-P composites (fish bone debrise, biogenic apatite) after decomposition and reprecipitation on the sea floor. Higher contents of Cu and 3+REEs in Unit IIb and III are suggested to be the result of abundant supply of organic substances in the equatorial high productivity zone.

  • PDF

Occurrence and Chemical Composition of White Mica and Ankerite from Laminated Quartz Vein of Samgwang Au-Ag Deposit, Republic of Korea (삼광 금-은 광상의 엽리상 석영맥에서 산출되는 백색운모와 철백운석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • The Samgwang deposit has been one of the largest deposits in Korea. The deposit consists of series of host rocks including Precambrian metasedimentary rocks and Jurassic Baegunsa formation, which unconformably overlies the Precambrian metasedimentary rocks. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. Laminated quartz veins are common in the deposit which contain minerals including quartz, ankerite, white mica, chlorite, apatite, rutile, arsenopyrite, sphalerite, chalcopyrite and galena. The structural formulars of white micas from laminated quartz vein and wallrock alteration are determined to be (K1.02-0.82Na0.02-0.00Ca0.00)(Al1.73-1.58Mg0.26-0.16Fe0.23-0.10Mn0.00Ti0.03-0.01Cr0.01-0.00)(Si3.35-3.22Al0.79-0.65)O10(OH)2 and (K0.75-0.67Na0.01Ca0.00) (Al1.78-1.74Mg0.16-0.15Fe0.15-0.13Mn0.00Ti0.04-0.02Cr0.01-0.00)(Si3.33-3.26Al0.74-0.67)O10(OH)2, respectively. It suggest that white mica from laminated quartz vein has higher interlayer cation (K+Na+Ca) and Fe+Mg+Mn+Ti content in octahedral site compared to the white mica from the wallrock alteration. Compositional variations in white mica from laminated quartz vein can be caused by phengitic or Tschermark substitution ((Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI)+(Si4+)IV) and (Fe3+)VI <-> (Al3+)VI substitution. Ankerite from laminated quartz vein has compositional variations of FeO and MgO contents along crystal growth direction. The geochemical and textural features suggest that laminated quartz vein from the Samgwang gold-silver deposit was formed during ductile shear stage, which is an important main gold-silver ore-forming event in orogeinc deposit.

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.