• Title/Summary/Keyword: ApMV

Search Result 26, Processing Time 0.032 seconds

Cloning and Phylogenetic Characterization of Coat Protein Genes of Two Isolates of Apple mosaic virus from ¡?Fuji¡? Apple

  • Lee, Gung-Pyo;Ryu, Ki-Hyun;Kim, Hyun-Ran;Kim, Chung-Sun;Lee, Dong-Woo;Kim, Jeong-Soo;Park, Min-Hye;Noh, Young-Mi;Choi, Sun-Hee;Han, Dong-Hyun;Lee, Chang-Hoo
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was detected and isolated from diseased 'Fuji' apple (Malus domestica) in Korea. The coat protein (CP) genes of two ApMV strains, denoted as ApMV-Kl and ApMV-K2, were amplified by using the reverse transcription and polymerase chain reaction (RT-PCR) and were analyzed thereafter. The objectives were to define the molecular variability of genomic information of ApMV found in Korea and to develop virus-derived resistant gene source for making virus-resistant trans-genic apple. RT-PCR amplicons for the APMVS were cloned and their nucleotide sequences were determined. The CPs of ApMV-Kl and ApMV-K2 consisted of 222 and 232 amino acid residues, respectively. The identities of the CPs of the two Korean APMVS were 93.1% and 85.6% at the nucleotide and amino acid sequences, respectively. The CP of ApMV-Kl showed 46.1-100% and 43.2-100% identities to eight different ApMV strains at the nucleotide and amino acid levels, respectively. When ApMV-PV32 strain was not included in the analysis, ApMV strains shared over 83.0% and 78.6% homologies at the nucleotide and amino acid levels, respectively. ApMV strains showed heterogeneity in CP size and sequence variability. Most of the amino acid residue differences were located at the N-termini of the strains of ApMV, whereas, the middle regions and C-termini were remarkably conserved. The APMVS were 17.(1-54.5% identical with three other species of the genus Ilarviyus. ApMV strains can be classified into three subgroups (subgroups I, II, and III) based on the phylogenetic analysis of CP gene in both nucleotide and amino acid levels. Interestingly, all the strains of subgroup I were isolated from apple plants, while the strains of subgroups II and III were originated from peach, hop, or pear, The results suggest that ApMV strains co-evolved with their host plants, which may have resulted in the CP heterogeneity.

Insights into factors affecting synonymous codon usage in apple mosaic virus and its host adaptability

  • Pourrahim, R.;Farzadfar, Sh.
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • The genetic variability and population structure of apple mosaic virus (ApMV) have been studied; however, synonymous codon usage patterns influencing the survival rates and fitness of ApMV have not been reported. Based on phylogenetic analyses of 52 ApMV coat protein (CP) sequences obtained from apple, pear, and hazelnut, ApMV isolates were clustered into two groups. High molecular diversity in GII may indicate their recent expansion. A constant and conserved genomic composition of the CP sequences was inferred from the low codon usage bias. Nucleotide composition and relative synonymous codon usage (RSCU) analysis indicated that the ApMV CP gene is AU-rich, but G- and U-ending codons are favored while coding amino acids. This unequal use of nucleotides together with parity rule 2 and the effective number of codon (ENC) plots indicate that mutation pressure together with natural selection drives codon usage patterns in the CP gene. However, in this combination, selection pressure plays a more crucial role. Based on principal component analysis plots, ApMV seems to have originated from apple trees in Europe. However, according to the relative codon deoptimization index and codon adaptation index (CAI) analyses, ApMV exhibited the greatest fitness to hazelnut. As inferred from the results of the similarity index analysis, hazelnut has a major role in shaping ApMV RSCU patterns, which is consistent with the CAI analysis results. This study contributes to the understanding of plant virus evolution, reveals novel information about ApMV evolutionary fitness, and helps find better ApMV management strategies.

Survey on Virus Infection for Commercial Nursery Trees of Major Apple Cultivars in Korea (국내 유통 주요 사과나무 묘목의 바이러스 감염 실태)

  • Lee, Sung-Hee;Kwon, Yeuseok;Shin, Hyunman;Nam, Sang-Yeong;Hong, Eui Yon;Kim, Byeongkwan;Kim, Daeil;Cha, Byeongjin;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2017
  • The 4 viruses, the Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), and Apple mosaic virus (ApMV) and 1 viroid, Apple scar skin viroid (ASSVd) are known major viral pathogens of apple trees in Korea. Infection degree of the 5 viral pathogens in the commercial nursery trees of major apple cultivars, 'Hongro', 'Fuji' and bud mutation of 'Fuji' was investigated. Infection ratio of the ACLSV, ASPV and ASGV for scion of an apple cultivar 'Hongro' were 100%, 81.3% and 100%, respectively. On the other hand, no infection for either ApMV and ASSVd detected. For the root stock of the cultivar, infection ratio of ACLSV, ASPV and ASGV showed 87.5%, 81.3% and 100% as well as ApMV and ASSVd were 12.5% and 6.3%, respectively. From the scion of apple cultivars 'Fuji' and bud mutation of 'Fuji', infection ratio of ACLSV, ASPV and ASGV showed 86.7%, 86.7% and 100%, respectively. Whereas, no infection for either ApMV or ASSVd detected. From the root stock of the cultivars, infection ratio of ACLSV, ASPV and ASGV showed 86.7%, 93.3% and 93.3% as well as ApMV and ASSVd were 12.5% and 6.3%, respectively. Result of our study indicates that most of commercial nursery apple trees were supplied with multiple infections by apple viruses causing potential losses for apple growers and, henceforth, agricultural policy for supply of the virus-free trees should be employed as soon as possible.

Occurrence Status of Five Apple Virus and Viroid in Korea (국내 주요지역의 사과 바이러스 및 바이로이드 5종의 발생 현황)

  • Lee, Seongkyun;Cha, Jae-Soon;Kwon, Yeuseok;Lee, Yun Sang;Yoo, Se Eun;Kim, Ju Hyung;Kim, Daeil
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • The investigation of the infection rate of domestic apple orchards by four types of apple viruses (Apple chlorotic leaf spot virus [ACLSV], Apple stem pitting virus [ASPV], Apple stem grooving virus [ASGV], Apple mosaic virus [ApMV]) and one type of viroid (Apple scar skin viroid, ASSVd) found that most apple trees were infected with viruses and viroid at the rate of 97.3%. By region, the infection rate in Jeongseon stood at 98.8%, Danyang at 100%, Yesan at 100%, Jangsu at 89.1%, and Muju at 98.1%. By each virus and viroid, the infection rate of ASGV was the highest at 93.4%, followed by ASPV at 85.7%, ACLSV at 59.0%, ASSVd at 6.7%, and ApMV at the lowest 3.6%. In addition, 84.8% of the cases were infected with two or more types of viruses and viroid, nearly seven times the single type infection rate of 12.4%, and the cases infected with three viruses, ASPV, ACLSV, and ASGV accounted for 56.2%, more than the half the total number of trees investigated.

Virus Detection of Dwarfing Rootstock and Scion in Major Commercial Apple Cultivars (국내 유통 주요 사과 품종 왜성대목 및 접수의 바이러스 검정)

  • Huh, Yoon Sun;Lee, Joung Kwan;Park, Jae Seong;Yoon, Yeo Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.52-52
    • /
    • 2018
  • Apple (Malus domestica) is one of the most economically important fruits in Korea. But virus infection has decreased sustainable production of apple and caused the serious problems such as yield loss and poor fruit quality. Virus or viroid infection including Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple mosaic virus (ApMV) and Apple scar skin viroid (ASSVd) has been also reported in Korea, furthermore, its damages and economic losses have increased constantly. In our research, we tried to survey virus infection for commercial nursery trees of major apple cultivars, especially dwarfing rootstocks 'M.9' and 'M.26' as well as scions. Trees were collected from 11 locations which have produced a great amount of apple nursery stocks in Korea. Infection degree was investigated in apple cultivars, 'Hongro' and 'Fuji' using RT-PCR method. In the scion of cultivar 'Hongro', infection ratio of ACLSV, ASPV and ASGV were 100%, 81.8% and 100% respectively. In the rootstock of cultivar 'Hongro', infection ratio of ACLSV, ASPV, ASGV and ApMV were 90.9%, 81.8%, 100% and 9.1% respectively. In the scion of cultivar 'Fuji', infection ratio of ACLSV, ASPV and ASGV were 81.8%, 90.9% and 100% respectively. In the rootstock of cultivar 'Fuji', infection ratio of ACLSV, ASPV, ASGV and ApMV were 81.8%, 90.9%, 100% and 9.1% respectively. Infection of ASSVd was not detected in both cultivars. From our results, it was found that most of apple rootstocks and scions had multiple infections by apple viruses which have caused economic damage in fruit production.

  • PDF

Detection of Viruses Infecting Stone Fruits in Western Mediterranean Region of Turkey

  • Yardimci, Bayram Cevik Nejla;Culal-Klllc, Handan
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.44-52
    • /
    • 2011
  • Field surveys were conducted in 45 stone fruit orchards in seven districts of Isparta Province located in western Mediterranean region of Turkey important for stone fruit production. Leaf samples were collected from 175 trees showing virus-like symptoms. These samples were first tested by ELISA for five different RNA viruses including Apple mosaic ilarvirus (ApMV), Prunus necrotic ringspot ilarvirus (PNRSV), Prune dwarf ilarvirus (PDV), Plum pox potyvirus (PPV), Apple chlorotic leafspot trichovirus (ACLSV). While no ApMV and PPV infection was found, 46, 24 and 16 samples were tested positive for PDV, ACLSV and PNRSV, respectively, in ELISA showing about 45% of symptomatic trees in the region were infected with at least one of these viruses. In addition, it was found that nine sweet cherry trees were mixed infected with two or three of these viruses and PDV with an infection rate of 26.3% was the most widespread virus in symptomatic trees in western Mediterranean region. Thirty samples were selected and tested by a multiplex RT-PCR (mRT-PCR) for simultaneous detection of these viruses. While PPV was not detected, more than half of the tested 20 samples were individually or mixed infected with ApMV, ACLSV, PNRSV and PDV. The mRT-PCR results were confirmed by detection of these viruses individually in some of the field samples using RT-PCR with primes specific to each virus. Comparison of ELSA and mRT-PCR results of 30 samples showed that numbers of infected and mixed infected samples as well as infection and mixed infection rates were significantly higher in RT-PCR (20 and 66.7%) than in ELISA (14 and 46.7%). The results confirm that mRT-PCR is more sensitive than ELISA.

Rapid Screening of Apple mosaic virus in Cultivated Apples by RT-PCR

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.159-161
    • /
    • 2003
  • The coat protein (CP) gene of Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was selected for the design of virus-specific primers for amplification and molecular detection of the virus in cultivated apple. A combined assay of reverse transcription and polymerase chain reaction (RT-PCR) was performed with a single pair of ApMV-specific primers and crude nucleic acid extracts from virus-infected apple for rapid detection of the virus. The PCR product was verified by restriction mapping analysis and by sequence determination. The lowest concentration of template viral RNA required for detection was 100 fg. This indicates that the RT-PCR for detection of the virus is a 10$^3$times more sensitive, reproducible and time-saving method than the enzyme-linked immunosorbent assay. The specificity of the primers was verified using other unrelated viral RNAs. No PCR product was observed when Cucumber mosaic virus (Cucumovirus) or a crude extract of healthy apple was used as a template in RT-PCR with the same primers. The PCR product (669 bp) of the CP gene of the virus was cloned into the plasmid vector and result-ant recombinant (pAPCP1) was selected for molecule of apple transformation to breed virus-resistant transgenic apple plants as the next step. This method can be useful for early stage screening of in vitro plantlet and genetic resources of resistant cultivar of apple plants.

Development of Real-time Quantitative PCR Assay based on SYBR Green I and TaqMan Probe for Detection of Apple Viruses (사과 바이러스 검정을 위한 SYBR Green I 및 TaqMan probe 기반의 real-time PCR 검사법 개발)

  • Heo, Seong;Chung, Yong Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.496-507
    • /
    • 2020
  • Virus infections of apples result in lowered commercial qualities such as low sugar content, weakened tree vigor, and malformed fruits. An effective way to control viruses is to produce virus-free plants based on the development of an accurate and sensitive diagnostic method. In this study, real-time PCR assays based on SYBR Green I and TaqMan probes were developed for detecting ASGV, ASPV, and ApMV viruses. These methods can detect and quantify 103 to 1011 RNA copies/μL of each virus separately. Compared with methods with two different dyes, the SYBR Green I-based method was efficient for virus detection as well as for assay using the TaqMan probe. Field tests demonstrated that real-time PCR methods developed in this study were applicable to high-throughput diagnoses for virus research and plant quarantine.

Occurrence of Stone Fruit Viruses on Peach Trees (Prunus persica L. Batsch) in Korea (국내에서 발생하는 복숭아 바이러스병)

  • Cho, In Sook;Cho, Jeom Doeg;Choi, Seung Kook;Choi, Gug Seoun
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.391-395
    • /
    • 2012
  • To investigate the occurrence of viruses in peach, leaf samples were collected from peach trees in commercial orchard of six areas in Korea. Reverse transcription polymerase chain reaction (RT-PCR) was used to identify the presence of the following stone fruit viruses: Apple chlorotic leaf spot virus (ACLSV), Apple mosaic virus (ApMV), Prune dwarf virus (PDV), Prunus necrotic ringspot virus (PNRSV) and Plum pox virus (PPV). About 65.0% of the 515 samples were infected with ACLSV and PNRSV. Virus-like symptoms showing mosaic on leaves was observed in ACLSV infected peach trees. However, PNRSV infected peach trees showed no symptoms. These viral DNAs by sequence analysis were confirmed 4 ACLSV isolates and 3 PNRSV isolates. The Korean peach isolates of ACLSV and PNRSV showed 70-99% and 88-99% amino acid sequence identities, respectively, with those reported previously and their amino acid sequence identities with each other were approximately 95% and 88%, respectively. Phylogenetic analysis indicated that the Korean ACLSV isolates belong to the A group of ACLSV. The Korean PNRSV isolates reported in this study were grouped into I (PV32), II (PV96) and III (PE5) groups.