• Title/Summary/Keyword: Aorta contraction

Search Result 114, Processing Time 0.02 seconds

Bupivacaine-induced Vasodilation Is Mediated by Decreased Calcium Sensitization in Isolated Endothelium-denuded Rat Aortas Precontracted with Phenylephrine

  • Ok, Seong Ho;Bae, Sung Il;Kwon, Seong Chun;Park, Jung Chul;Kim, Woo Chan;Park, Kyeong Eon;Shin, Il Woo;Lee, Heon Keun;Chung, Young Kyun;Choi, Mun Jeoung;Sohn, Ju Tae
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • Background: A toxic dose of bupivacaine produces vasodilation in isolated aortas. The goal of this in vitro study was to investigate the cellular mechanism associated with bupivacaine-induced vasodilation in isolated endothelium-denuded rat aortas precontracted with phenylephrine. Methods: Isolated endothelium-denuded rat aortas were suspended for isometric tension recordings. The effects of nifedipine, verapamil, iberiotoxin, 4-aminopyridine, barium chloride, and glibenclamide on bupivacaine concentration-response curves were assessed in endothelium-denuded aortas precontracted with phenylephrine. The effect of phenylephrine and KCl used for precontraction on bupivacaine-induced concentration-response curves was assessed. The effects of verapamil on phenylephrine concentration-response curves were assessed. The effects of bupivacaine on the intracellular calcium concentration ($[Ca^{2+}]_i$) and tension in aortas precontracted with phenylephrine were measured simultaneously with the acetoxymethyl ester of a fura-2-loaded aortic strip. Results: Pretreatment with potassium channel inhibitors had no effect on bupivacaine-induced relaxation in the endothelium-denuded aortas precontracted with phenylephrine, whereas verapamil or nifedipine attenuated bupivacaine-induced relaxation. The magnitude of the bupivacaine-induced relaxation was enhanced in the 100mM KCl-induced precontracted aortas compared with the phenylephrine-induced precontracted aortas. Verapamil attenuated the phenylephrine-induced contraction. The magnitude of the bupivacaine-induced relaxation was higher than that of the bupivacaine-induced $[Ca^{2+}]_i$ decrease in the aortas precontracted with phenylephrine. Conclusions: Taken together, these results suggest that toxic-dose bupivacaine-induced vasodilation appears to be mediated by decreased calcium sensitization in endothelium-denuded aortas precontracted with phenylephrine. In addition, potassium channel inhibitors had no effect on bupivacaine-induced relaxation. Toxic-dose bupivacaine-induced vasodilation may be partially associated with the inhibitory effect of voltage-operated calcium channels.

Effect of Aster scaber and Ixeris dentata on Contractility and Vasodilation of Cardiovascula and Endothelial Cell in Hyperlipidemic Rat (참취 및 씀바귀 첨가식이가 고지혈증 흰쥐의 심혈관 수축과 이완 및 혈관내피세포에 미치는 영향)

  • Lim, Sang-Sun;Lee, Jong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.300-307
    • /
    • 1997
  • The effects of Aster scaber and Ixeris dentata on cadiovascular system in hyperlipidemic rats were examined. Five groups of thirty Sprague Dawley rats were fed with the diet contained 1% cholesterol, 0.25% sodium cholate, 10% coconut oil and 5% lard(control group) for 4 weeks. Each experimental diet group was added with 5% plant powder or extract of the 5% plant powder by dry weight. Contractile or relaxation responses in the isolated artria and thoracic aortae were measured and the morphological changes of the aortic endotherium from the rats fed the experimental diet were inspected. In response to isoproterenol, the number of right atrial spontaneous beat was significantly lower in Cham chyi powder group$(PP_{1})$ and Sumbagui powder group$(PP_{2})$ than control at $10^(-8)M$ concentration. The contraction forces by injection of phenylephrine and calcium in isolated thoracic aorta were significantly low in each experimental groups compared with the control. The relaxation rates by acetylcholine represented comparatively higher value in $PP_{1}$ than control. The morphological changes of endothelial cell surface was a little in $PP_{1}$ and $PP_{2}$ compared with control, while the damages were considerably advanced in Cham chyi and Sumgbagui extract diet group$(PE_{1},\;PE_{2})$.

  • PDF

Extracellular $K^+$ Effects on the Mouse Aortic Endothelial Cell Contractility (쥐 대동맥 혈관 내피세포에서 세포 외 $K^+$에 의한 혈관 수축선 조절 기전)

  • 안재호;유지영
    • Journal of Chest Surgery
    • /
    • v.36 no.12
    • /
    • pp.887-893
    • /
    • 2003
  • External stimuli increases intracellular (IC) $Ca^{2+}$, which increases extracellular (EC) $K^{+}$. To verify $K^{+}$ effects on the vascular contraction, we performed an experiment using mouse aortic endothelial cell. Meterial and Method: We examined the mouse aortic contractility changes as we measured the IC $Ca^{2+}$ change and ionic current by using the voltage clamp technique under different conditions such as: increasing EC $K^{+}$, removing endothelial cell, giving L-NAME (N-nitro-L-arginine methyl ester) which suppress nitric oxide formation, Ouabain which control N $a^{+}$ - $K^{+}$ pump and N $i^{2+}$ which repress N $a^{+}$-C $a^{2+}$ exchanger Result: When we increased EC $K^{+}$ from 6 to 12 mM, there was no change in aortic contractility. Aorta contracted with more than 12 mM of EC $K^{+}$. Ace-tylcholine (ACh) induced relaxation was inhibited with EC $K^{+}$ from 6 to 12 mM, but was not found after de-endothelialization or L-NAME treatment. ATP or ACh increased IC $Ca^{2+}$ in cultured endothelium. After maximal increase of IC $Ca^{2+}$, increasing EC $K^{+}$ from 6 to 12 mM made IC $Ca^{2+}$ decrease and re-decreasing EC $K^{+}$ to 6 mM made IC $Ca^{2+}$ increase. Ouabain and N $i^{2+}$ masked the inhibitory effect of endothelium dependent relaxation by increased EC $K^{+}$. Conclusion: These data indicate that increase in EC $K^{+}$ relaxes vascular smooth muscle and reduces $Ca^{2+}$ in the endothelial cells which inhibit endothelium dependent relaxation. This inhibitory mechanism may be due to the activation of N $a^{+}$- $K^{+}$ pump and N $a^{+}$-C $a^{2+}$ exchanger. $a^{+}$-C $a^{2+}$ exchanger.r.

Application of the Pulsatile Cardiopulmonary Bypass in Animal Model (이중 박동성 인공심폐기의 동물 실험)

  • Shin, Hwa-Kyun;Won, Yong-Soon;Lee, Jea-Yook;Her, Keun;Yeum, Yook;Kim, Seung-Chul;Min, Byoung-Goo
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Background: Currently, the cardiopulmonary machine with non-pulsatile pumps, which are low in internal circuit pressure and cause little damage to blood cells, is widely used. However, a great number of experimental studies shows that pulsatile perfusions are more useful than non-pulsatile counterparts in many areas, such as homodynamic, metabolism, organ functions, and micro-circulation. Yet, many concerns relating to pulsatile cardiopulmonary machines, such as high internal circuit pressure and blood cell damage, have long hindered the development of pulsatile cardiopulmonary machines. Against this backdrop, this study focuses on the safety and effectiveness of the pulsatile cardiopulmonary machines developed by a domestic research lab. Material and Method: The dual-pulsatile cardiopulmonary bypass experiment with total extracorporeal circulation was conducted on six calves, Extracorporeal circulation was provided between superior/inferior vena cava and aorta. The membrane oxygenator, which was placed between the left and right pumps, was used for blood oxygenation. Circulation took four hours. Arterial blood gas analysis and blood tests were also conducted. Plasma hemoglobin levels were calculated, while pulse pressure and internal circuit pressure were carefully observed. Measurement was taken five times; once before the operation of the cardiopulmonary bypass, and after its operation it was taken every hour for four hours. Result: Through the arterial blood gas analysis, PCO2 and pH remained within normal levels. PO2 in arterial blood showed enough oxygenation of over 100 mmHg. The level of plasma hemoglobin, which had total cardiopulmonary circulation, steadily increased to 15.87 $\pm$ 5.63 after four hours passed, but remained below 20 mg/㎗. There was no obvious abnormal findings in blood test. Systolic blood pressure which was at 97.5$\pm$5.7 mmHg during the pre-circulation contraction period, was maintained over 100 mmHg as time passed. Moreover, diastolic blood pressure was 72.2 $\pm$ 7.7 mmHg during the expansion period and well kept at the appropriate level with time passing by. Average blood pressure which was 83$\pm$9.2 mmHg before circulation, increased as time passed, while pump flow was maintained over 3.3 L/min. Blood pressure fluctuation during total extracorporeal circulation showed a similar level of arterial blood pressure of pre-circulation heart. Conclusion: In the experiment mentioned above, pulsatile cardiopulmonary machines using the doual-pulsatile structure provided effective pulsatile blood flow with little damage in blood cells, showing excellence in the aspects of hematology and hemodynamic. Therefore, it is expected that the pulsatile cardiopulmonary machine, if it becomes a standard cardiopulmonary machine in all heart operations, will provide stable blood flow to end-organs.