• Title/Summary/Keyword: Anxiolytic

Search Result 114, Processing Time 0.022 seconds

Perilla Frutescens Extract Protects against Scopolamine-Induced Memory Deficits in Mice (스코폴라민으로 유도한 기억력 손상 모델에서 소엽 추출물의 보호 효과)

  • Lee, Jihye;Lee, Eunhong;Jung, Eun Mi;Kim, Dong Hyun;Kim, Sung-kyu;Park, Mi Hee;Jung, Ji Wook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.97-103
    • /
    • 2021
  • Perilla frutescens (P. frutescens) is an important herb used for many purposes such as medicinal, aromatic, and functional food in Asian countries and has beneficial effects such as antioxidant activity, anti-inflammation activity, anti-depression activity, and anxiolytic activity. However, there have been no studies on the protective effect of P. frutescens extract (PFE) on amnesia in vivo. The present study aimed to investigate whether PFE protects memory deficit using a scopolamine-induced mice model and elucidate the underlying mechanisms involved. The protective effect of PFE against scopolamine-induced memory deficits was investigated using Y-maze, passive avoidance, and Morris water maze tests. Furthermore, the potential mechanisms of PFE in improving memory capabilities related to the cholinergic system and antioxidant activity were examined. PFE significantly increased spontaneous alternation in the Y-maze test, step-through latency in the passive avoidance test, and swimming time in the target quadrant in the probe test when compared to the scopolamine-treated group. Likewise, PFE significantly decreased escapes latency in the Morris water maze test. PFE could not regulate cholinergic function in acetylcholine level and acetylcholine esterase activity. However, PFE increased DPPH radical scavenging activity dose-dependently and total polyphenol content was 127.7±1.2 ㎍ GAE/mg. The results showed that the PFE could be a preventive and/or therapeutic candidate for memory and cognitive dysfunction in Alzheimer's disease.

Reparative, Neuroprotective and Anti-neurodegenerative Effects of Granulocyte Colony Stimulating Factor in Radiation-Induced Brain Injury Model

  • Gokhan Gurkan;Ozum Atasoy;Nilsu Cini;Ibrahim Halil Sever;Bahattin Ozkul;Gokhan Yaprak;Cansin Sirin;Yigit Uyanikgil;Ceren Kizmazoglu;Mumin Alper Erdogan;Oytun Erbas
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.511-524
    • /
    • 2023
  • Objective : This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically. Methods : This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals. Results : G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels. Conclusion : In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.

The Effects of Aroma Self Massage in Hands on Pain, Depressive Mood and Anxiety in Breast Cancer Patients (유방암 환자의 통증, 우울 및 불안 증상 조절에 아로마 자가 치료의 효과)

  • Sohn, Keun-Joo;Kim, Myung-Ja;Lee, June-Young;Lee, Jae-Bok;Kim, Su-Hyun;Kim, Jong-A;Jung, Hoe-Hyun;Choi, Seung-Wan;Choi, Youn-Seon
    • Journal of Hospice and Palliative Care
    • /
    • v.8 no.1
    • /
    • pp.18-29
    • /
    • 2005
  • Purpose: Aroma therapy is one modality of alternative medicine. It was well known to have an analgesic, antidepressive and anxiolytic effects. This study is designed to investigate the effect of aroma self hand massage on vital signs, pain, depression, anxiety and stress in breast cancer patients. Methods: 32 female patient over 20 years old were divided into two groups by a non-blinded randomized controlled method. Patient in the aroma group (n=15) massaged their hands twice a day using aroma oil by themselves in their home for 2 weeks. However, those in control group (n=17) had not received my intervention during the study periods. Pain intensity, state anxiety, depression and stress of subjects were evaluated three times (0, 1, 3 weeks) using Visual Analogue Scale (VAS, $0{\sim}10cm$), State Trait Anxiety Inventory (STAI), Beck Depression Inventory Scales (BDIS), Brief Encounter Psychosocial Instrument (BEPSI revised edition). Also the change of patients' accompanying symptoms after aroma massage were analyzed using a structured questionnaire. Results: Pain Intensity decreased in the aroma group compared with control group (VAS changes $-0.83{\pm}1.01\;vs\;0.38{\pm}0.86$, P=0.005). The numbers of accompanying symptoms (P=0.044), depression score (P=0.001) and anxiety score (P=0.008) were significantly decreased in the aroma group, while in control group they increased after 2 weeks. However, the stress score showed no significant changes in both groups ($0.05{\pm}0.85\;vs\;0.04{\pm}0.20$, P=0.1519). The depression, anxiety and stress score showed negative correlation with compliance of aroma massage, but statistically no significant. The systolic blood pressure was a little increased in aroma group ($4.53{\pm}14.43\;vs\;0.0{\pm}7.22$, P=0.026), but was not significant clinically. Patients in the aroma group complained of several symptoms such as headache (20%), paresthesia (6.75%) and nausea (6.7%). However, there were no drop-out patients for those side effects. Conclusion: Aroma self massage during two weeks in breast cancer patients alleviates the pain intensity, depression and anxiety significantly.

  • PDF

The Effect of Exercise Intensity on Changes in Neuronal Nitric Oxide Synthase Expression in the Hippocampus and Cerebral Cortex of Obese Mice (고지방식이로 유도된 비만 마우스의 해마 및 대뇌피질에서 운동강도에 따른 nNOS 발현의 변화)

  • Baek, Kyung-Wan
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.18-28
    • /
    • 2019
  • Recent studies reported that obesity upregulated the expression of neuronal nitric oxide synthase (nNOS) and regulated particular behavior patterns in animal models. They also reported that ameliorated the increase in nNOS expression and decreased depression and anxiolytic effects. Thus, exercise seems to be an effective strategy for improving brain function by downregulating nNOS. However, the immune response differs greatly, depending on the exercise intensity. The aim of the present study was to investigate differences in brain nNOS expression in obese C57BL/6 mice that performed exercise of different intensities. Obesity was induced in 6-wks-old mice (n=35) by feeding a 60%-fat diet for 6-wks. A control (CON) group (n=14) was fed a normal diet. At the end of the induction 6-wks period of obesity, seven animals in the CON group and obesity-induced group were sacrificed to confirm obesity induction (preliminary experiments and confirmation of visceral fat accumulation). The remaining animals were then used in an 8-wks exercise intervention. Other than the CON (n=7), the obesity-induced animals were divided into the following groups: high-fat diet (HFD, n=7), HFD-low intensity (HFD-LI, n=7, 12 m/min for 75 min), HFD-moderate intensity (HFD-MI, n=7, 15 m/min for 60 min), and HFD-high intensity (HFD-HI, n=7, 18 m/min for 50 min). The exercise was performed on an animal treadmill. The expression of the nNOS protein in the hippocampus was significantly higher in the HFD group as compared with that in the CON group (p<0.01). However, there was no difference in the hippocampal expression of the nNOS protein in the other exercise groups as compared with that in the CON group. In contrast, nNOS expression in the HFD-HI group was significantly lower than that in the HFD-LI group (p<0.05). The expression of phosphorylated Akt (pAkt) was significantly higher in all the exercise groups as compared with that in the CON and HFD groups. There was no difference in the expression of pAkt in the cerebral cortex among groups, and the expression of pAkt in the cerebellum was significantly higher in the HFD-HI group as compared with that in the CON group (p<0.05). There were also no between-group differences in pAkt expression in the cerebellum among the various exercise groups. In conclusion, nNOS seems to be overexpressed in response to obesity, and it appears to be downregulated by exercise. Relatively high-intensity exercise may be effective in improving brain function by downregulating nNOS.