• Title/Summary/Keyword: Antiwear

Search Result 32, Processing Time 0.013 seconds

Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP) (환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용)

  • ;Masabumi Masuko
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

Synthesis and Antiwear Properties of Ammonium Dithiocarbamate-based Ionic Liquid (I) (암모니움 디티오카바메이트계 이온성 액체의 합성 및 내마모성능 (I))

  • Baek, Seung-Yeob;Kim, Nam-Kyun;Shin, Jihoon;Chung, Keunwo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.323-329
    • /
    • 2014
  • The friction-reducing properties of lubricants containing ionic liquids based on ammonium dithiocarbamate are studied. The ionic liquids are produced through the following two steps: the synthesis of sodium alkyl dithiocarbamates via the substitution reaction of dialkylamine and carbon disulfide and their subsequent conversion into ammonium dithiocarbamate-based ionic liquids through an ion-exchange reaction with a quaternary alkyl ammonium halide salt. The structures of the ionic liquids are characterized by NMR spectroscopy and Fourier transform infrared spectroscopy. The isolated yields of the ionic liquids, which are viscous and pale yellow, are approximately 92%. The Brookfield viscosities and pour points of the ionic liquids are determined. Further, their wear resistances are measured through the four-ball wear test and the Schwingung Reibung Ver-schleiss (oscillation, friction, wear) test. The wear scar diameter of the lubricants containing 1 wt of the quaternary alkyl ammonium dithiocarbamate-based ionic liquids (0.475-0.631 mm) is significantly lower than that of the base oil (0.825 mm), proving that the ammonium dithiocarbamate-based ionic liquids have good friction-reducing characteristics. However, these friction-reducing characteristics fade significantly after long-term storage, owing to the degradation of the ionic liquids.