• Title/Summary/Keyword: Antiviral effect

Search Result 209, Processing Time 0.027 seconds

Substrate Specificity of Protein Kinase UL97, an antiviral target, on Mutant Peptide Substrates Derived from a Peptide, KESYSVYVYKV (KESYSVYVYKV로부터 변형된 펩타이드 기질을 이용한 항바이러스제의 타깃이 되는 UL97 단백질 인산화 효소의 기질 특이성)

  • Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.466-470
    • /
    • 2008
  • Human cytomegalovirus expresses an unusual protein kinase UL97, a member of ${H_V}{U_L}$ family of protein kinase. UL97 can phosphorylate nucleoside analogs such as ganciclovir as well as protein/peptide. It has previously been reported that UL97 is able to phosphorylate a KESYSVYVYKV peptide and that P+5 position (K) is important. We examined the extent of contribution of other positions (P-4 through P+6) of the peptide to be substrate of UL97 using alanine substituted peptides (Ala scanning) and deleted peptides. The result suggested that the E (P-2) is negative effect and P+5 (K) is still important. The peptide YSVYVYK is the shortest substrate enough to show high activity, which could be a starting point to develop peptidomimetic drug. This study would give important information to deeply understand the substrate specificity of UL97 and develop an antiviral drug using the small peptide identified here.

Ribavirin, Electric Current, and Shoot-tip Culture to Eliminate Several Potato Viruses

  • Yi Jung-Yoon;Seo Hyo-Won;Choi Young-Moo;Park Young-Eun
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • To eradicate several viruses such as PVX, PVY, and PLRV which often cause considerable damages to the growth and yields of potatoes, several stems including shoot tips were excised from the potato plants grown for 50 days and electric shock was treated. Shoot tips excised from electric-shocked stems were transferred into the medium supplemented with antiviral compound, ribavirin to examine the combinatorial effect. When treated only with 20 mg/L ribavirin, PVX concentration in the regenerated plant-lets was slowly decreased as repeating sub-culture and finally, it took 32 weeks to reach completely PVX-free stock. With an electric shock treatment (10 mA electric current), all the replicates became free from PVY. However, PLRV was not completely eradicated from 94P70-4 and 93P29-3 lines even by treating with 10 mA electric shock. In this case, both electric shock and antiviral compound treatments in axillary buds from the stem segment were successful in eradicating viral contamination.

ORI2 is a Strong Inhibitor of Coxsackievirus B4 Replication (오리방풀로부터 분리된 ORI2의 췌장염 유발 콕사키바이러스B4 증식억제)

  • Lim, Byung-Kwan;Jo, Soyeon;Kim, Jin Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.282-287
    • /
    • 2014
  • The ORI2 (3-[3,4-dihydroxyphenyl]acrylic acid 1-[3,4-dihydroxyphenyl]-2-methoxycarbonylethyl ester) was purified from the extract of Isodon excisus. We confirmed the antiviral effect of ORI2 in a coxsackievirus-induced pancreatitis model. Coxsackievirus B4 (CVB4) is a common cause of pancreatitis and may be reason of the type-1 diabetes. Anti-enteroviral compounds were screened by HeLa cell survival assay. Purified natural compounds were added to HeLa cells cultured 96-well plates after $10^4PFU/ml$ CVB4 pre-incubation for 30 min. ORI2 significantly improved HeLa cell survival in a dose-dependent manner. In addition, ORI2 (1 mM) treatment was dramatically decreased virus protease 2A induced eIF4G-I cleavage and viral VP1 capsid protein production. HeLa cell virus titers and viral RNA replication were significantly decreased in ORI2-treatment in a dose dependent manner (1 mM~0.001 mM). These results demonstrate that ORI2 has a strong antiviral effect. It was significantly decreased virus replication. ORI2 may be developed as a potential therapeutic agent for CVB4.

Hepatoprotective and a Potential Antiviral Effect of Biphenyl Dimethyl Dicarboxylate/Amantadine for an Acute Viral Hepatitis Induced by MHV-2 in ICR Mice (마우스 간염바이러스(MHV-2)에 의해 유발된 전격성 바이러스간염에 대한 비페닐메칠디카르복실레이트/아만타딘제제의 간보호 및 잠재적 항바이러스효과)

  • Joo, Seong-Soo;Chin, Hyouk-Jun;Won, Tae-Joon;Jang, Su-Kil;Hwang, Kwang-Woo;Lee, Do-Ik
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.194-198
    • /
    • 2007
  • The mouse hepatitis virus (MHV-2) induces broad collapses, focal necrosis and cytolysis of hepatocytes, and leads to death after three to five days of intraperitoneal injection in mice. The present study investigated whether the combinatorial treatment of dimethyl dicarboxylate/amantadine (2:1) showed hepatoprotective and/or antiviral properties in MHV-2 infected ICR mice. In the study, we found that dimethyl dicarboxylate/amantadine group (VDDBA) increased the survival rate (30.8%) when compared to positive control, VL (7.7%) and that VDDBA lengthened the survival time (4.2 d)after MHV-2 infection. In addition, ALT and AST were well regulated when treated with VDDBA (p<0.01). Finally, we concluded that those results were probably from the inhibition of viral replication and at least antiproliferative effect on MHV-2.

Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells

  • Liu, Yong-Shi;Liu, Qiong;Jiang, Yan-Long;Yang, Wen-Tao;Huang, Hai-Bin;Shi, Chun-Wei;Yang, Gui-Lian;Wang, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.515-525
    • /
    • 2020
  • Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.

Inhibitory Effect of Extracts from 33 Medicinal Herbs Against TMV and CMV Infection (33종 생약 추훌물의 담배모자이크바이러스(TMV)와 오이모자이크바이러스(CMV)에 대한 감염 억제효과)

  • Kwon, Soon-Bae;Lee, Hye-Myong;Kim, Byung-Sup;Choi, Jang-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.280-283
    • /
    • 2010
  • Extracts of 33 medicinal herbs belonging to 28 different families used as precious resources in the Northeast Asia were tested for their antiviral activities against two major plant viruses. Twenty one methanol extracts from 19 different families were found to have a antiviral activity against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) when tested on indicator plants under greenhouse conditions. Most of these extracts have weak activities at the concentration used. But the methanol extracts of Phellinus linteus exhibited potent ($98.7{\pm}1.3%$) antiviral activity against TMV infection and also showed $97.2{\pm}2.2%$ activity against CMV infection. The methanol extracts of the gall of Rhus javanica also showed strong inhibitory efficacy over $98.7{\pm}1.1%$ against TMV or CMV infection. Further research is needed to elucidate the active constituents of these medicinal herbs which may be useful in the development of new and effective antiviral agent against plant viruses.

Antibacterial and Antiviral Activities of Microwave-assisted Thuja orientalis Extracts (마이크로웨이브를 이용한 측백나무 추출물의 항균 및 항바이러스 특성)

  • Sangwon Ko;Jae-Young Lee;Seong-Hyeon Kim;Young-Chul Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.192-198
    • /
    • 2023
  • In this study, the components of microwave-assisted extracts obtained from Thuja orientalis leaves were analyzed, and the cytotoxicity, antibacterial and antiviral activities were evaluated. The predominant components from microwave-assisted extraction were catechin, leucopelargonidin, arecatannin, quinolone, and kaempferol derivatives, which are classified in the flavonoid and tannin groups. We observed that the 0.11 mg/mL of extract concentration did not show cytotoxicity in HaCaT cells. The antibacterial activities were tested according to the guidelines of methods for determining the bactericidal activity of antimicrobial agents. The extracts showed 99.9% antibacterial efficiency against gram-positive S. aureus, while the antibacterial effect on gram-negative E. coli was insignificant. When the extract concentration and contact time with bacteria were increased, 99.9% antibacterial efficiency was observed for E. coli as well as S. aureus. Following the standard to assess the activity of microbicides against viruses in suspension (ASTM-E1052-20), the antiviral efficiency was more than 99.99% for influenza A (H1N1) and SARS-CoV-2. These results suggest its potential use in antiviral disinfectants, surface coatings, personal protective equipment, and textiles.

Antiviral Efficacy of Citra-kill®, Disinfectant Solution Against Avian Influenza Virus

  • Cha, Chun-Nam;Lee, Yeo-Eun;Kang, In-Jin;Yoo, Chang-Yeul;Park, Eun-Kee;An, Sun-Jeong;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • Highly pathogenic avian influenza virus (HPAIV) is already panzootic in poultry and caused a considerable economic loss in poultry industry. In addition, HPAIV continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. In this study, the virucidal efficacy of Citra-$Kill^{(R)}$ composed to quaternary ammonium chloride and citric acid was investigated against avian influenza H9N2 virus (AIV). A virucidal efficacy was determined with the viability of AIV contacted with the disinfectant in the allantoic membrane of chicken embryos. Citra-$Kill^{(R)}$ and AIV was reacted on the distilled water (DW), hard water (HW) or organic matter suspension (OM) condition. On DW condition, AIV was inactivated with 2,000 fold dilutions of Citra-$Kill^{(R)}$. When the antiviral effect on HW condition was evaluated, the antiviral activity of the disinfectant showed on 1,500 fold dilutions against AIV. With the investigation of the antiviral effect of the disinfectant on OM condition, AIV was inactivated on 500 fold dilutions of Citra-$Kill^{(R)}$. As Citra-$Kill^{(R)}$ possesses virucidal efficacy against AIV, the disinfectant solution can be used to limit the spread of animal viral diseases.

Antiviral and Therapeutic Effects of Extracts (PB-81) of Daphne Genkwa (Siebold & Zucc.) on Bovine Rotavirus (원화추출물(PB-81)의 소 로타바이러스 설사병에 대한 항바이러스 및 치료효과)

  • Mi Young Lee;Yeon Seong Kim;Jae Myung Park;Jae Chan Song
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.408-417
    • /
    • 2024
  • It was confirmed whether PB-81, a 50% ethanol extract of Daphne genkwa (Siebold & Zucc), had an inhibitory effect on virus proliferation in bovine rotavirus and a therapeutic effect on bovine diarrhea disease. The results showed that PB-81 induced the interferon beta in A549 cells, an epithelial cell line and interferon gamma in NK92 cells, a blood cell line. Furthermore, to confirm the viral proliferation inhibitory effect of PB-81, PB-81 was administered to MBDK cell line before, during, and after infection. Result shows that the virus was suppressed in all cases where PB-81 was administered, and the best virus suppression effect was achieved when PB-81 was administered before virus infection. In the toxicity test in mice, no side effects due to toxicity were observed, even at a maximum dose of 20 mg/mL. To verify the therapeutic effect on 16 cattle with bovine rotavirus diarrhea and 4 cattle in the control group, PB-81 was administered at a dose of 20 mg/5 mL, and No fatality was observed during the treatment. The average recovery duration from the initial administration of PB-81 was 2.25 days in the PB-81 administration group and 6.5 days in the control group without PB-81 administration. No side effects were observed from the tested cattle with rotavirus diarrhea.

Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection

  • Song, Jae-Hyoung;Shim, Aeri;Kim, Yeon-Jeong;Ahn, Jae-Hee;Kwon, Bo-Eun;Pham, Thuy Trang;Lee, Jongkook;Chang, Sun-Young;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.576-583
    • /
    • 2018
  • Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.