• Title/Summary/Keyword: Antitumor action

Search Result 99, Processing Time 0.023 seconds

The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs

  • Deok-Soo Son;Eun-Sook Lee;Samuel E. Adunyah
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.29.1-29.20
    • /
    • 2020
  • The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.

Cytotoxic Effect of Taxol on Malignant Bone Tumor Cell Lines (악성 골종양 세포주들에 대한 Taxol의 세포독성)

  • Shin, Duk-Seop;Kim, Se-Dong;Kim, Keon-Ho;Lee, Jong-Hyung;Kim, Seong-Yong;Kim, Jung-Hye
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • Taxol, the extract from the Taxus brevifolia which is a Pacific yew tree has aroused the interest of the tumor investigators since the 1960s. As well, it is shown to have broad antitumor activity in preclinical experimental models. Its action mechanism is an anti-microtubule effect by duplication of tubulin. The most impressive antitumor activity of taxol has been observed in advanced ovarian cancer and metastatic breast cancer. The purpose of this study was to determine how taxol acts on malignant bone tumor cell lines, to compare its cytotoxic effect with those of other chemotherapeutic agents, and to ascertain the its combination effect with adriamycin. Cell lines used in this study were G-292(osteosarcoma, human), SaOS-2(osteosarcoma, primary, human), and HT-1080(fibrosarcoma, human). Methotrexate, adriamycin, cisplatinum, ifosfamide and taxol were used as testing chemotherapeutic agents and their maximum test concentration were $500{\mu}g/ml$, $200{\mu}g/ml$, $500{\mu}g/ml$, $1000{\mu}g/ml$, and $600{\mu}g/ml$, respectively. The media for cell culture was RPMI-1640 with 10% fetal bovine serum and gentamycin. The results were as follows. The $IC_{50}$ of methotrexate, ifosfamide, cisplatinum, adriamycin and Taxol in G-292 were $2.3{\times}10^{-1}{\mu}g/ml$, $8.0{\times}10^0{\mu}g/ml$, $3.5{\times}10^0{\mu}g/ml$, $9.8{\times}10^{-1}{\mu}g/ml$, $2.7{\times}10^{-2}{\mu}g/ml$ respectively, in SaOS-2 $3.5{\times}10^{-1}{\mu}g/ml$, $1.5{\times}10^1{\mu}g/ml$, $2.8{\times}10^0{\mu}g/ml$, $9.9{\times}10^{-2}{\mu}g/ml$, $1.0{\times}10^{-2}{\mu}g/ml$, respectively, in HT-1080 $4.2{\times}10^{-2}{\mu}g/ml$, $5.4{\times}10^1{\mu}g/ml$, $3.8{\times}10^0{\mu}g/ml$, $5.5{\times}10^{-3}{\mu}g/ml$, $1.1{\times}10^{-3}{\mu}g/ml$, respectively. In conclusion, taxol had very potent cytotoxic effect on the malignant bone tumor cell lines with adriamycin, and was more potent than methotrexate, cisplatinum and ifosfamide. There were synergistic antitumor effects on G-292 and SaOS-2 cell lines in combination test of taxol and adriamycin. From the above results, it would be estimated that taxol could be a new antitumor drug for the malignant bone tumors, providing measures against the side effects and followed by the clinical tests.

  • PDF

Comparative Study of Korean Mistletoe Lectin and Bee Venom on the Anti-Cancer Effect and Its Mechanisms of Action in Hepatocellular Carcinoma Cells (상기생과 봉독이 간암 세포주 Hep G2에 대해 미치는 항암 기전 비교)

  • Kim, Sung-Uk;Kim, Bo-Ram;Heo, Kyung;Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.845-857
    • /
    • 2009
  • Background and Objectives : Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) have been reported to induce apoptosis in various cancer cell lines in vitro and to show antitumor activity against a variety of tumors in animal models. However, the comparative effect of VCA and BV on the anti-cancer effect and mechanisms of action has not been determined. In this study, the effect in a human hepatocellular carcinoma cell line, Hep G2 cells, was examined. Methods : Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay in litro. The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action were examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. The involvement of kinase was examined in VCA or BV-induced apoptosis by using kinase inhibitors. Results : VCA and BV killed Hep G2 cells in a time and dose-dependent manner. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including MAPK/ERK, p38 MAPK and JNK. BV also activated PARP-1, MAPK/ERK. and p38 MAPK but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not by BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. VCA-induced apoptosis was partially inhibited by in the presence of JNK and p38 inhibitor, but BV only by p38 inhibitor. Conclusions : VCA-induced apoptosis is dependent on the activation of p38 and JNK. while BV-induced apoptosis is mediated by p38 activation in Hep G2 cells.

  • PDF

Prospective Study for Korean Red Ginseng Extract as an Immune Modulator following a Curative Surgery in Patients with Advanced Colon Cancer

  • Boo, Yoon-Jung;Park, Joong-Min;Kim, Jin;Suh, Sung-Ock
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2007
  • In this paper, we present evidence that the Korean red ginseng extract shows the immunomodulatory activities during postoperative chemotherapy after curative surgery in patients with advanced colon cancer. We measured the circulating interleukin-2 (IL-2), interleukin-8 (IL-8)and interleukin-10 (IL-10) as a immune modulator to evaluate the effect of Korean red ginseng. The mean preoperative value of IL-2 was similar in the non-RG group and the RG group (5.72 pg/ml versus 6.87 pg/ml, p>0.05). The mean value of IL-2 was compared with IL-2 from healthy control group, there was no significant difference (14.89 pg/ml versus 14.22 pg/ml, p>0.05). The mean preoperative value of IL-8 was higher in the non-RG group comparing with the RG group (30.92 pg/ml versus 36.25 pg/ml, p < 0.05). At postoperative 3 month, the mean values of IL-8 from non-RG and RG group down to 24.56 pg/ml and 21.46 pg/ml respectively. The IL-8 of RG group at 3 month showed no difference with that of HC group(21.46 pg/ml versus 16.31 pg/ml, p>0.05). The preoperative mean value of IL-10 of non-RG, RG and HC group was 11.56 pg/ml, 10.8 pg/ml, and 3.68 pg/ml respectively. At postoperative 3 month, the mean values of IL-10 from non-RG and RG group down to 8.45 pg/ml and 5.04 pg/ml respectively. In spite of decreasing IL-10 levels of both cancer Patients group with time, there was still significant difference with that of HC group (non-RG versus HC group, p=0.00, RC versus HC group, p=0.04). The results of this study suggest that the red ginseng extract may have some immunomodulatory properties associated with IL-2, IL-8 and IL-10 activity in patients with advanced colorectal cancer during postoperative chemotherapy. We think to need the further studies and a larger sample size to fully evaluate the antitumor effect of ginseng and need to establish this mechanism of action as well as identify the active components associated with antitumor activity and immunomodulation in patients with advanced colorectal cancer.

Effects of an Extract from the Roots of Platycodon Grandiflorum on the Levels of p53 and pRB in NCI-H460 Human Lung Carcinoma Cells (길경 수용액 추출물에 의한 NCI-H460 인체 폐암세포의 p53 및 pRB의 발현에 미치는 영향)

  • Park, Bong-Kyu;Gam, Chul-Woo;Heo, Tae-Yool;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1530-1537
    • /
    • 2006
  • Platycodi Radix, the root of Platycodon grandiflorum A. DC (Campanulaceae), commonly known as Doraji in Korea (Chinese name, 'Jiegeng', and Japanese name, 'Kikyo') has been used as an expectorant in traditional Oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. In Korea, Platycodi Radix is also used as a food and employed as a folk remedy for adult diseases, such as bronchitis, asthma and pulmonary tuberculosis, hyperlipidemia, diabetes, and inflammatory diseases, and as a sedative. Several studies on its chemical and immunopharmacological effects including immunostimulation and antitumor activity have been performed. However, the relevant molecular mechanisms are poorly understood. Platycodi Radix, the root of Platycodon grandiflorum A. DC (Campanulaceae), commonly known as Doraji in Korea (Chinese name, 'Jiegeng', and Japanese name, 'Kikyo') has been used as an expectorant in traditional Oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health bensfits. In Korea, Platycodi Radix is also used as a food and employed as a folk remedy for adult diseases, such as bronchitis, asthma and pulmonary tuberculosis, hyperlipidemia, diabetes, and inflammatory diseases, and as a sedative. Several studies on its chemical and immunopharmacological effects including immunostimulation and antitumor activity have been performed. However, the relevant molecular mechanisms are poorly understood. In the present study, we investigated the effects of an aqueous extract from the roots of P. grandiflorum AEPG) on the cell growth of human lung adenocarcinoma NCI-H460 cells in order to understand its anti-proliferative mechanism. AEPG treatment down-regulated the cyclin D1 expression in both transcriptional and translational levels without alteration of cyclin E. In AEPG-treated cells, the levels of cyclin-dependent kinase (C아) 6 mRNA and protein were significantly inhibited, but the levels of Cdk2 and Cdk4 were slightly inhibited by treatment of AEPG. AEPG treatment induced a marked accumulation of Cdk inhibitors, p16 and p27. However, AEPG treatment did not affect not only retinoblastoma protein (pRB) but also tumor suppressor p53 protein expression. The present results indicated that AEPG-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1 phase progression through induction of Cdk inhibitors such as p16 and p27, and inhibition of cyclin D1 and Cdk6. AEPG exposure, as offered by this study, provides cluse for the mechanism of AEPG action. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention and treatiment against human lung cancer.

Genotoxicity and Interference with Cell Cycle Activities by an Ethanolic Extract from Thai Plumbago indica Roots in Human Lymphocytes in vitro

  • Thitiorul, Sumon;Ratanavalachai, Treetip;Tanuchit, Sermkiat;Itharat, Arunporn;Sakpakdeejaroen, Intouch
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2487-2490
    • /
    • 2013
  • In Thai traditional medicine, Plumbago indica or Jetamul-Pleung-Dang in Thai is known to have health benefit especially for anti-inflammatory, antibacterial, and antitumor activities. However, the mechanisms of its action are still uncertain. One of which might be genotoxic effects. In the present study, we investigated the genotoxicity of an ethanolic extract of Plumbago indica root (EEPIR) by sister chromatid exchange (SCE) assay in human lymphocytes. Results have shown that all treatments with EEPIR ($12.5-100{\mu}g/ml$) could induce cell cycle delay as shown by significant increase in the number of metaphase cells in the first cell cycle but neither in the second nor the third cell cycle. Only at concentrations of 25, 50, and $100{\mu}g/ml$ were SCE levels significantly increased above that of the control (p<0.05). EEPIR at a concentration of $500{\mu}g/ml$ induced cell death as few mitotic cells were shown. Accordingly, EEPIR ($25-100{\mu}g/ml$) is genotoxic in human lymphocytes and cytotoxic at concentrations of ${\geq}500{\mu}g/ml$ in vitro. Therefore, these activities of the EEPIR could serve its potential therapeutic effects, especially as an anticancer agent. Further study of EEPIR in vivo is now needed to support this in vitro evidence.

Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons

  • Ryoo, Nayeon;Rahman, Md. Ataur;Hwang, Hongik;Ko, Sung Kwon;Nah, Seung-Yeol;Kim, Hyoung-Chun;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.490-495
    • /
    • 2020
  • Background: Ginsenoside Rk1, a saponin component isolated from heat-processed Panax ginseng Meyer, has been implicated in the regulation of antitumor and anti-inflammatory activities. Although our previous studies have demonstrated that ginsenoside Rg3 significantly attenuated the activation of NMDA receptors (NMDARs) in hippocampal neurons, the effects of ginsenosides Rg5 and Rk1, which are derived from heat-mediated dehydration of ginsenoside Rg3, on neuronal NMDARs have not yet been elucidated. Methods: We examined the regulation of NMDARs by ginsenosides Rg5 and Rk1 in cultured rat hippocampal neurons using fura-2-based calcium imaging and whole-cell patch-clamp recordings. Results: The results from our investigation showed that ginsenosides Rg3 and Rg5 inhibited NMDARs with similar potencies. However, ginsenoside Rk1 inhibited NMDARs most effectively among the five compounds (Rg3, Rg5, Rk1, Rg5/Rk1 mixture, and protopanaxadiol) tested in cultured hippocampal neurons. Its inhibition is independent of the NMDA- and glycine-binding sites, and its action seems to involve in an interaction with the polyamine-binding site of the NMDAR channel complex. Conclusion: Taken together, our results suggest that ginsenoside Rk1 might be a novel component contributable to the development of ginseng-based therapeutic treatments for neurodegenerative diseases.

Fentanyl Increases Colorectal Carcinoma Cell Apoptosis by Inhibition of NF-κB in a Sirt1-dependent Manner

  • Zhang, Xiu-Lai;Chen, Min-Li;Zhou, Sheng-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.10015-10020
    • /
    • 2014
  • Background: Fentanyl is used as an analgesic to treat pain in a variety of patients with cancer and recently it has become considered to also act as an antitumor agent. The study present was designed to investigate the effects of fentanyl on colorectal cancer cell growth and plausible mechanisms. Materials and Methods: The human colorectal carcinoma cell line HCT116 was subcutaneously injected into nude mice. The viability of HCT116 was tested by MTT assay, and apoptosis by flow cytometry and caspase-3 activity. The expression of Sirt1 and NF-${\kappa}B$ were evaluated by Western blotting and the levels of Sirt1 and NF-${\kappa}B$ by fluorescence method. SiRNA was used to silence and Ad-Sirt1 to overexpress Sirt1. Results: Our data showed that fentanyl could inhibit tumor growth, with increased expression of Sirt1 and down-regulation of Ac-p65 in tumors. Compared with control cells without treatment, HCT116 cells that were incubated with fentanyl had a higher apoptotic rate. Moreover, fentanyl could increase expression and activity of Sirt1 and inhibitor expression and activity of NF-${\kappa}B$, which might be mechanisms of fentanyl action. Conclusions: Fentanyl increased colorectal carcinoma cell apoptosis by inhibition of NF-${\kappa}B$ activation in a Sirt1-dependent manner.

Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells

  • Seidi, Khaled;Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Abbasi, Mehran Mesgari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1119-1122
    • /
    • 2016
  • Background: Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. Conclusions: Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.

The Effects of Gokgisaeng on Anti-inflammation and Rat C6 Glioma Cell Migration (곡기생(槲寄生)의 항염증 효능 및 암세포 이주저해에 미치는 영향)

  • Kim, Hyun-Young;Jang, Soo-Young;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.31-45
    • /
    • 2013
  • Objectives : Gokgisaeng (Korean mistletoe) is used for the treatment of inflammatory and cancer diseases in traditional Korean medicine and its major component lectins have been reported to induce nitric oxide (NO) in RAW 264.7 macrophages, and also induce apoptosis of various types of cancer cells, although its modulatory effects on cancer cell migration and macrophage activation is poorly understood. The aim of this study is to clarify molecular mechanisms of action responsible for the anti-inflammatory and antitumor migration potentials of Korean mistletoe extract (KME). Methods : We investigated the anti-inflammatory activity of KME on NO production and inducible nitric oxide synthase (iNOS) expression by lipopolysaccharide (LPS) in both RAW 264.7 macrophages and rat C6 glioma cells, and also evaluated inhibitory efficacy on glioma cell growth and migration. For assessment, XTT assay, nitrite assay, RT-PCR, scratch-wound and Boyden chamber assay, and western blot analysis were performed. Results : Previously reported, unlike the efficacy of Gokgisaeng lectin, KME inhibited NO production and iNOS expression, and suppressed pro-inflammatory mediators including IL-$1{\beta}$, IL-6, COX-2, iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, KME suppressed tumor cell growth and migration, and it also inhibited LPS-induced NO release and iNOS activation by down-regulating expression of protein kinase C (PKC) and phosphorylation of ERK in C6 glioma cells. Conclusions : Our research findings provide evidence that KME can play a significant role in blocking pro-inflammatory reaction and malignant progression of tumors through the suppression of NO/iNOS by down-regulating of inflammatory signaling pathways, PKC/ERK.