• Title/Summary/Keyword: Antisite-Sb

Search Result 2, Processing Time 0.016 seconds

Study on the Intrinsic Defects in Undoped GaSb Bulk and MBE-grown GaSb/SI-GaAs Epitaxial Layers for Infrared Photodetectors (적외선검출소자를 위한 GaSb 결정 및 MBE로 성장한 Gasb/SI-GaAs 박막의 진성결함에 관한 연구)

  • Kim, J.O.;Shin, H.W.;Choe, J.W.;Lee, S.J.;Noh, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2009
  • We have investigated the intrinsic defects remaining in epitaxial GaSb layers grown on SI-GaAs substrates compared to those in bulk GaSb crystal substrate, which is a basic material of Sb-based strained-layer superlattice infrared photodetectors. From the functional dependence of the band-to-band transition energy of the photomuminescence (PL) spectra observing up to near room-temperature (250 K), the temperature parameters of [$E_o$, $\alpha$, $\beta$] of undoped GaSb crystal are determined by using the Varshni empirical equation describing the temperature variation of the bandgap energy. Additionally to the antisite-Ga ([$Ga_{Sb}$]) with an ionization energy of 29 meV that is well known to a major intrinsic defect in GaSb, epitaxial GaSb layers show a pair of deep states at the emission energy of 732/711 meV that may be related with a complex of two antisite-Ga and antisite-Sb ([$Ga_{Sb}-Sb_{Ga}$]). Based on the analysis of the temperature and the excitation-power dependences of PL, it suggests that excess-Sb substitutes Ga-site by self-diffusion and two anti sites of [$Ga_{Sb}$] and [$Sb_{Ga}$] could form as a complex of [$Ga_{Sb}-Sb_{Ga}$] in GaSb epilayers grown under Sb-rich condition.

Thickness and Annealing Effects on the Thermoelectric Properties of P-type Bi0.5Sb1.5Te3 Thin Films (P형 Bi0.5Sb1.5Te3 박막의 열전 특성에 미치는 두께 및 어닐링 효과)

  • Kim Il-Ho;Jang Kyug-Wook
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • P-type $Bi_{0.5}$$Sb_{1.5}$ $Te_3$ thin films were deposited by the flash evaporation technique, and their thermoelectric properties and electronic transport parameters were investigated. The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties. Annealing effects on the carrier concentration and mobility were also studied, and their variations were analyzed in conjunction with the antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the effective mean free path was found to be 3150$\AA$. No phase transformation and composition change were observed after annealing treatment, but carrier mobility increased due to grain growth. Carrier concentration decreased considerably due to reduction of the antisite defects, so that electrical conductivity decreased and Seebeck coefficient increased. When annealed at 473 K for 1 hr, Seebeck coefficient and electrical conductivity were $160\mu$V/K and 610 $W^{-1}$ $cm^{ -1}$, respectively. Therefore, the thermoelectric quality factor were also enhanced to be $16\mu$W/cm $K^2$.>.