• Title/Summary/Keyword: Antisense oligo

Search Result 4, Processing Time 0.018 seconds

Influence of Antisense IGFBP-2 Oligo Deoxynucleotide Administration on Tissue IGFBP-2 Gene Expression in Chicks

  • Nagao, K.;Osada, K.;Murai, A.;Okumura, J.;Kita, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1781-1784
    • /
    • 2001
  • We have examined the influence of antisense oligo deoxynucleotide (ODN) of IGFBP-2 on tissue IGFBP-2 gene expression in chicks. Antisense IGFBP-2 ODN was directly injected into the liver or cerebroventricle. Control birds were injected with vehicle. The hepatic IGFBP-2 gene expression was decreased to approximately 30% of the control at 2 h after injection of antisense ODN. In the brain of chickens injected with antisense ODN, IGFBP-2 mRNA level did not change after 2 h of injection and decreased to approximately 60% of the control after 6 h of injection. These results showed that the expression of IGFBP-2 gene in the liver and brain was successfully suppressed by administrating antisense ODN and that hepatic IGFBP-2 gene expression was quickly suppressed by antisense ODN compared with the brain.

DOWN REGULATION OF TGF-$\beta$ GENE EXPRESSION BY ANTISENSE OLIGO-DEOXYNUCLEOTIDES INCREASE rIFN-${\gamma}$-INDUCED NITRIC OXIDE SYNTHESIS IN MURINE PERITONEAL MACROPHAGES

  • Jun, Chang-Duk;Kim, Su-Ung;Lee, Seong-Yong;Chung, Hun-Taeg
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.78-78
    • /
    • 1995
  • Increasing evidence indicates that the production of nitric oxide (NO) by inducible NO synthase (NOS) is tightely regulated. Transforming growth factor-${\beta}$ (TGF-${\beta}$) is a homodimeric protein secreted during macrophage activation, but several lines of evidence suggest that TGF-${\beta}$ is selectively suppressive for macrophage NO production. We therefore reasoned that a strategy employing oligodeoxynucleotides(ODNs) complemently to TGF-${\beta}$ mRNA (antisense ODNs) might increase NO production in IFN-${\gamma}$-treated murine peritoneal macrophages. To evaluate this concept, we tested the effects of antisense ODNs targeted to TGF-${\beta}$ mRNA (25-mer ODNs complemently to TGF-${\beta}$mRNA sequences) by introducing it into the medium of cultured macrophages. Phosphorothiolation of ODNs were employed to retard their degradation. Antisense ODNs had no effect on NO production by itself, whereas IFN-${\gamma}$ alone had modest effect. When antisense ODNs were used in combination with IFN-${\gamma}$, there was a marked cooperative induction of NO production, These effects of antisense ODNs were associated with decreased TGF-${\beta}$ expression in activated macrophages. ODNs with the same nucleotides but a scrambled sequence had no effect. Adding anti-TGF-${\beta}$ antibodies to the IFN-${\gamma}$-treated macrophages mimicked the positive effect of antisense ODNs on NO production. In addition, the effects of either antisense ODNs or anti-TGF-${\beta}$ antibodies were blocked by adding TGF-${\beta}$ in cultured macrophages. These results indicate that the generation of TGF-${\beta}$ by activated macrophages provides a self-regulating mechanism by which the temporal and perhaps spatial production of NO, a reactive and potentially toxic mediator, can be finely regulated.

  • PDF

Genetic Therapies for Duchenne Muscular Dystrophy and Beyond

  • Shin, Jin-Hong
    • Journal of Interdisciplinary Genomics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Progressive weakness of skeletal muscle is the hallmark of muscular dystrophies. It is often accompanied by cardiomyopathy and respiratory insufficiency. It has generally been perceived as incurable diseases, while the advent of genetic therapy is changing the paradigm. Most research and achievements have been for the treatment of Duchenne muscular dystrophy, while it is promising to hope for therapies for other myopathies. Drugs for nonsense read-through and exon skipping are already approved for clinical use in Europe and the United States, respectively. Gene therapy using adeno-associated virus is in early phase of clinical trial. In this review, most promising genetic therapies will be briefly described.

Resistance Characteristics of Flue-cured Tobacco Plants Transformed with CDNA of Potato Virus Y Replicase Gene (감자 바이러스 Y 복제유전자 cDNA로 형질전환된 황색종 담배의 저항성 특성)

  • 박은경;백경희;유진삼;조혜선;강신웅;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • A flue-cured tobacco variety (Nicotiana tabacum cv. Wisconsin) was used for Plant transformation with the complementary DNA (cDNA) of potato virus Y-necrosis strain (PVY-VN) replicase gone (Nb) which was synthesized through reverse-transcription Primed with oligo(dT) and Polymerization using RNase H-digested template. The cDNA was cloned into Plant expression vector Plasmid (PMBP2), and introduced into tobacco plants by co-culturing tobacco leaf disks with Agrobacterium tumefaciens LBA4404 containing the plasmid before Plant regeneration. Eight Plants, in which the inserted cDNA fragment was detected by Polymerase chain reaction (PCR), out of 70 putative transformants inserted with sense-oriented Mb cDNA showed no symptom at 3 weeks after inoculation, while the other 62 plants, and all plants with vector gone only and antisense-oriented NIb cDNA had susceptible vein-necrosis symptoms. However, only 2 of the 8 resistant plants were highly resistant, which remained symptomless up to 10 weeks after inoculation. Among the first progenies (T1) from self-fertilized seeds of the two resistant transgenic plants, less than 10 % of 71 plants appeared highly resistant (with no symptom), 70% moderately resistant (with mild symptoms on 1 - 2 leaves), and about 20% susceptible (with susceptible symptoms on 3 or more leaves) at 3 weeks after inoculation. These results suggest that the PVY resistance was inherited in the 71 generation. Key words : potato virus Y. viral replicase gene, transgenic tobacco Plants, resistance.

  • PDF