• Title/Summary/Keyword: Antireflection coating

Search Result 79, Processing Time 0.036 seconds

Characterization of multi-layer antireflection coating for crystalline silicon solar cells (결정질 실리콘 태양전지의 다층 반사방지막 특성)

  • Ju, Dae-Hyeon;Yang, Jong-U;Seong, Seung-Gi;Cheon, Hui-Gon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.55-55
    • /
    • 2008
  • 반사방지막은 태양전지 셀 제작에 적용되고 있으며, 효율을 향상시키기 위하여 $SiO_2$, $TiO_2$를 이용한 Multi-layer 반사방지막을 적용하였다. Multi-layer의 효과가 기존의 SiN 반사방지막에 비하여 광수집의 향상에 영향을 주었음을 알 수 있었다.

  • PDF

Anti-reflection coating on the facet of a spot size converter integrated laser diode using a pair of TiO2 and SiO2 thin films (TiO2와 SiO2 박막 쌍을 이용한 광모드 변환기가 집적된 반도체 레이저 단면의 무반사 코팅)

  • 송현우;김성복;심재식;김제하;오대곤;남은수
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.396-399
    • /
    • 2002
  • Using a bi-layer anti-reflection coating of $TiO_2$and $SiO_2,$ we have achieved a minimum facet reflectivity of $~10^{-5}$ and a band width of 27 nm for a reflectivity of $~10^{-4}$ or less for 1.3 $\mu\textrm{m}$ spot size converter integrated semiconductor lasers. This coating is applicable to external-cavity-tuned laser sources and semiconductor optical amplifiers.

Comparison of the Numerical Methods for the Optimum Antireflection Coatings of Laser Diode Facets (레이저 다이오드 단면의 최적 무반사 코팅을 위한 수치해석 방법 비교)

  • 이세진;김부균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1935-1944
    • /
    • 1993
  • We calculate the optimum refractive index and thickness for a single layer antireflection coating as a function of active layer thickness of a laser diode using three different simplified numerical methods. The difference of the results using three methods comes from that of the effective refractive index of a laser used in three methods. We compare three simplified methods to an exact method to check the validity of the simplified methods. We conclude that the simplified method, choosing the effective index of a laser diode as a function of incidence angle of each plane wave composing of a guided mode agree well to an exact method for both TE and TM modes and the cases of strongly and weakly guiding.

  • PDF

Optical Characteristics of Nanocone-patterned c-Si Wafers Coated with Dielectric Thin Films (유전박막이 도포된 나노원뿔 패턴된 단결정 Si 기판의 광특성)

  • Kim, Eunah;Park, Jimin;Ko, Eun-Ji;Kim, Dong-Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.55-58
    • /
    • 2017
  • We investigated the influences of dielectric thin film coating on the optical characteristics of c-Si wafers with nanocone (NC) arrays using finite-difference time-domain (FDTD) simulations. Dielectric thin films on high-refractive-index surface can lower optical reflection and reflection dips appear at the wavelengths where destructive interference occurs. The optical reflection of the NC arrays was lower than that of the dielectric-coated planar wafer in broad wavelength range. Remarkable antireflection effects of the NC array could be attributed to beneficial roles of the NCs, including the graded refractive index, multiple reflection, diffraction, and Mie resonance. Dielectric thin films modified the optical reflection spectra of the NC arrays, which could not be explained by the interference alone. The optical properties of the dielectric-coated NC arrays were determined by the inherent optical characteristics of the NC arrays.

Band Gap and Defect Sites of Silicon Nitride for Crystalline Silicon Solar Cells (단결정 실리콘 태양전지를 위한 실리콘 질화막의 밴드갭과 결함사이트)

  • Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.365-365
    • /
    • 2010
  • In this paper, silicon nitride thin films with different silane and ammonia gas ratios were deposited and characterized for the antireflection and passivation layer of high efficiency single crystalline silicon solar cells. As the flow rate of the ammonia gas increased, the refractive index decreased and the band gap increased. Consequently, the transmittance increased due to the higher band gap and the decrease of the defect states which existed for the 1.68 and 1.80 eV in the SiNx films. The reduction in the carrier lifetime of the SiNx films deposited by using a higher $NH_3/SiH_4$ flow ratio was caused by the increase of the interface traps and the defect states in/on the interface between the SiNx and the silicon wafer. The silicon and nitrogen rich films are not suitable for generating both higher carrier lifetimes and transmittance. These results indicate that the band gap and the defect states of the SiNx films should be carefully controlled in order to obtain the maximum efficiency for c-Si solar cells.

  • PDF

Polymer master fabrication for antireflection using low-temperature AAO process (저온 양극산화공정을 이용한 반사 방지용 폴리머 마스터 제작)

  • Shin, Hong-Gue;Kwon, Jong-Tae;Seo, Young-Ho;Kim, Byeong-Hee;Park, Chang-Min;Lee, Jae-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1825-1828
    • /
    • 2008
  • A simple method for the fabrication of porous nano-master for antireflective surface is presented. In conventional fabrication methods for antireflective surface, coating method with low refractive index has usually been used. However, it is required to have high cost and long times for mass production. In this paper, we suggested the fabrication method of antireflective surface by the hot embossing process using the porous nano patterned master on silicon wafer fabricated by low-temperature anodic aluminum oxidation. Through multi-AAO and etching processes, nano patterned master with high aspect ratio was fabricated at the large area. Pore diameter and inter-pore distance are about 150nm and from 150 to 200nm. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

PECVD Silicon Nitride Film Deposition and Annealing Optimization for Solar Cell Application (태양전지 응용을 위한 PECVD 실리콘 질화막 증착 및 열처리 최적화)

  • Yoo, Jin-Su;Dhungel Suresh Kumar;Yi, Jun-Sin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.565-569
    • /
    • 2006
  • Plasma enhanced chemical vapor deposition(PECVD) is a well established technique for the deposition of hydrogenated film of silicon nitride (SiNx:H), which is commonly used as an antireflection coating as well as passivating layer in crystalline silicon solar cell. PECVD-SiNx:H films were investigated by varying the deposition and annealing conditions to optimize for the application in silicon solar cells. By varying the gas ratio (ammonia to silane), the silicon nitride films of refractive indices 1.85 - 2.45 were obtained. The film deposited at $450^{\circ}C$ showed the best carrier lifetime through the film deposition rate was not encouraging. The film deposited with the gas ratio of 0.57 showed the best carrier lifetime after annealing at a temperature of $800^{\circ}C$. The single crystalline silicon solar cells fabricated in conventional industrial production line applying the optimized film deposition and annealing conditions on large area substrate of size $125mm{\times}125mm$ (pseudo square) was found to have the conversion efficiencies as high as 17.05 %. Low cost and high efficiency silicon solar cells fabrication sequence has also been explained in this paper.

Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy;Lee, Hee-Kyung;Kim, Hong-Doo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.

Influence of RTA treatments on optical properties of ZnO nanorods synthesized by wet chemical method

  • Shan, Qi;Ko, Y.H.;Lee, H.K.;Yu, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.190-190
    • /
    • 2010
  • Zinc oxide is the most attractive material due to the large direct band gap (3.37 eV), excellent chemical and thermal stability, and large exciton binding energy (60 meV). Recently, ZnO nanorods were used as the high efficient antireflection coating layer of solar cells based on silicon (Si). In this reports, we studied the effects of rapid thermal annealing (RTA) treatment on optical properties of ZnO nanorods. For fabrication of ZnO nanorods, there are many methods such as hydrothermal method, sol-gel method, and metal organic chemical vapor deposition method. Among of them, we used the conventional wet chemical method which is simple and low temperature growth. In order to synthesize the ZnO nanorods, the ZnO films were deposited on Si substrate by RF magnetron sputtering at room temperature and the samples were dipped to aqua solution containing the zinc nitrate and hexamethylentetramines (HMT). The synthesis process was achieved in keeping with temperature of $90-95^{\circ}C$ and under constant stirring. The morphology of ZnO nanorods on glass and Si was characterized by scanning electron microscopy. For the analysis of antireflection performance, the reflectance and transmittance were measured by spectrophotometer. And for analyzing the effects of RTA treatment on ZnO nanorods, crystalline properties were investigated by X-ray diffraction measurements and optical properties was estimated by photoluminescence spectra.

  • PDF

The design of lateral lilted-SCH-SLD with the window legion (Window 영역을 갖는 lateral tilted-SCH-SLD의 설계)

  • 김운섭;황상구;김정호;김동욱;황민철;홍창희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.26-27
    • /
    • 2000
  • 고휘도 다이오드(Superluminescent Diodes : SLD)는 fiber gyroscope의 광원으로서 가장 적당한 소자로 알려져 있다$^{(1)}$ . 본 연구는 실제의 광섬유 자이로 스코프에 적용하기 위하여 활성층의 발진파장이 1.55$mu extrm{m}$인 SLD의 제작을 목적으로 하고 있다. SLD제작의 핵심은 거울면에서의 반사도를 낮추어 거울면의 반사에 의하여 일어나는 발진을 억제하는 것으로, 이를 위하여 단면이 각을 가진 stripe$^{(2)}$ , 계면의 무반사 코팅(antireflection coating : AR coating)$^{(3)}$ , window buried heterostructure$^{(4)}$ , unpumped absorbing region$^{(5)}$ , bent-buried absorbing region$^{(6)}$ 등과 같은 방법이 이용이 되고 있다 (중략)

  • PDF